In this paper, we establish the following limiting weak-type behaviors of Littlewood-Paley g-function g_φ: for nonnegative function f∈ L^1(R^n),■and ■where f_t(x) =t^(-n)f(t^(-1) x) for t > 0. Meanwhile, the co...In this paper, we establish the following limiting weak-type behaviors of Littlewood-Paley g-function g_φ: for nonnegative function f∈ L^1(R^n),■and ■where f_t(x) =t^(-n)f(t^(-1) x) for t > 0. Meanwhile, the corresponding results for Marcinkiewicz integral and its fractional version with kernels satisfying L_α~q-Dini condition are also given.展开更多
Membrane technology has been used for H_2 purification. In this paper, the systematic density functional simulations are conducted to study the separation of H_2 from the impurity gases(H_2, N_2, H_2 O, CO, Cl_2, and ...Membrane technology has been used for H_2 purification. In this paper, the systematic density functional simulations are conducted to study the separation of H_2 from the impurity gases(H_2, N_2, H_2 O, CO, Cl_2, and CH_4) by the bilayer porous graphitic carbon nitride(g-C_3 N_4) membrane. Theoretically, the bilayer g-C3 N4 membrane with a diameter of about3.25 A? should be a perfect candidate for H_2 purification from these mixed gases, which is verified by the high selectivity(S) for H_2 over other kinds of gases(3.43 × 1028 for H_2/N2; 1.40 × 1028 for H_262/H_2 O; 1.60 × 10 for H_2/CO; 4.30 × 10^(14) for H_2/Cl_2; 2.50 × 10^(55) for H_2/CH_4), and the permeance(P) of H_2(13 mol/m^2·s·Pa) across the bilayer g-C_3 N_4 membrane at 300 K, which should be of great potential in energy and environmental research. Our studies highlight a new approach towards the final goal of high P and high S molecular-sieving membranes used in simple structural engineering.展开更多
Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation dete...Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.展开更多
文摘In this paper, we establish the following limiting weak-type behaviors of Littlewood-Paley g-function g_φ: for nonnegative function f∈ L^1(R^n),■and ■where f_t(x) =t^(-n)f(t^(-1) x) for t > 0. Meanwhile, the corresponding results for Marcinkiewicz integral and its fractional version with kernels satisfying L_α~q-Dini condition are also given.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2018B19414)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161501)+5 种基金the Six Talent Peaks Project in Jiangsu Province,China(Grant No.2015-XCL-010)the National Natural Science Foundation of China(Grant Nos.51776094 and 51406075)the Program of Henan Provincial Department of Education,China(Grant No.16A330004)the Special Fund of Nanyang Normal University,China(Grant No.ZX2016003)the Science and Technology Program of Henan Department of Science and Technology,China(Grant No.182102310609)the Scientific Research and Service Platform Fund of Henan Province,China(Grant No.2016151)
文摘Membrane technology has been used for H_2 purification. In this paper, the systematic density functional simulations are conducted to study the separation of H_2 from the impurity gases(H_2, N_2, H_2 O, CO, Cl_2, and CH_4) by the bilayer porous graphitic carbon nitride(g-C_3 N_4) membrane. Theoretically, the bilayer g-C3 N4 membrane with a diameter of about3.25 A? should be a perfect candidate for H_2 purification from these mixed gases, which is verified by the high selectivity(S) for H_2 over other kinds of gases(3.43 × 1028 for H_2/N2; 1.40 × 1028 for H_262/H_2 O; 1.60 × 10 for H_2/CO; 4.30 × 10^(14) for H_2/Cl_2; 2.50 × 10^(55) for H_2/CH_4), and the permeance(P) of H_2(13 mol/m^2·s·Pa) across the bilayer g-C_3 N_4 membrane at 300 K, which should be of great potential in energy and environmental research. Our studies highlight a new approach towards the final goal of high P and high S molecular-sieving membranes used in simple structural engineering.
基金supported by the National Key Scientific Instruments to Develop Dedicated(Nos.2013YQ090811 and 2016YFF0103800)
文摘Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.