In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou...In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.展开更多
Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G...Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).展开更多
Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by nois...Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection.展开更多
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an...In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.A...An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.An adaptive non-singleton fuzzy support vector machine decision feedback equalizer(ANSFSVMDFE) is also presented,it adopts the non-singleton fuzzy Gaussian kernel function with similar characteristic of pre-filter and is modified with a space transformation based approach.Simulations under nonlinear time variant channels show that ASVM-DFE and ANSFSVM-DFE perform very well on nonlinear equalization and ANSFSVM-DFE acts especially well in resisting abrupt interference.展开更多
提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间...提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间隔分布的损失函数来优化分类边界,结合核范数正则化策略保持矩阵的低秩特性,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现模型的高效训练。在多个基准数据集上的实验结果表明:与现有方法相比,FODMC在分类准确率、鲁棒性和泛化能力等方面均展现出显著优势,为矩阵数据分类问题提供了一种有效的解决方案。展开更多
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its...An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.展开更多
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo...Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.展开更多
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ...A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.展开更多
基金Project(51176045)supported by the National Natural Science Foundation of ChinaProject(2011ZK2032)supported by the Major Soft Science Program of Science and Technology Ministry of Hunan Province,China
文摘In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.
基金supported by the National Natural Science Foundation of China (60974082)
文摘Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).
基金supported in part by the National Natural Science Foundation of China under Grants (61471212)Natural Science Foundation of Zhejiang Province under Grants (LY16F010001)+1 种基金Science and Technology Program of Zhejiang Meteorological Bureau under Grants (2016YB01)Natural Science Foundation of Ningbo under Grants(2016A610091,2017A610297)
文摘Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection.
基金Project(2003AA430200)supported by the National High Technology Research and Development Program of China
文摘In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
基金Supported by the National Creative Research Groups Science Foundation of P.R. China (NCRGSFC: 60421002) and National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)
文摘An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.An adaptive non-singleton fuzzy support vector machine decision feedback equalizer(ANSFSVMDFE) is also presented,it adopts the non-singleton fuzzy Gaussian kernel function with similar characteristic of pre-filter and is modified with a space transformation based approach.Simulations under nonlinear time variant channels show that ASVM-DFE and ANSFSVM-DFE perform very well on nonlinear equalization and ANSFSVM-DFE acts especially well in resisting abrupt interference.
文摘提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间隔分布的损失函数来优化分类边界,结合核范数正则化策略保持矩阵的低秩特性,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现模型的高效训练。在多个基准数据集上的实验结果表明:与现有方法相比,FODMC在分类准确率、鲁棒性和泛化能力等方面均展现出显著优势,为矩阵数据分类问题提供了一种有效的解决方案。
基金supported by the National Natural Science Foundation of China (60873086)the Aeronautical Science Foundation of China(20085153013)the Fundamental Research Found of Northwestern Polytechnical Unirersity (JC200942)
文摘An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.
基金Projects(City U 11201315,T32-101/15-R)supported by the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE.
基金supported by the National Defense Preliminary Research Program of China(A157167)the National Defense Fundamental of China(9140A19030314JB35275)
文摘A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate.