When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer...When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.展开更多
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was pr...Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value.展开更多
This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an ...This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an adaptive FNN control system is designed to achieve high-precision track control via the backstepping approach. In the adaptive FNN control system, a FNN backstepping controller is a principal controller which includes a FNN estimator used to estimate the uncertainties, and a robust controller is designed to compensate the shortcoming of the FNN backstepping controller. All adaptive learning algorithms in the adaptive FNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed adaptive FNN control system is verified by simulation results.展开更多
The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) ...The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) to construct a feedforward/feedback control scheme to regulate the air-fuel ratio. Using fuzzy neural networks, a fuzzy neural hybrid controller is obtained based on PI controller. The new controller, which can adjust parameters online, has been tested in transient air-fuel ratio control of a CNG engine.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algor...A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simulation results indicate that fuzzy recurrent neural network controller has perfect dynamic and static performances .展开更多
In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as sync...In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors, are employed to approximate the unknown nonlinear functions. Based on the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters, fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are given to show the effectiveness of the proposed method.展开更多
为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。...为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。展开更多
基金supported partially by the National Natural Science Foundation of China under Grant 61503348the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010the 111 project under Grant B17040
文摘When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
基金Supported by the National High Technology and Development Program Foundation of China under Grant No. 2002AA420090.
文摘Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value.
基金Supported by Doctoral Bases Foundation of the Educational Committee of P. R. China under Grant No. 20030151005 and the Ministry of Communication of P. R. China under Grant No. 200332922505.
文摘This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an adaptive FNN control system is designed to achieve high-precision track control via the backstepping approach. In the adaptive FNN control system, a FNN backstepping controller is a principal controller which includes a FNN estimator used to estimate the uncertainties, and a robust controller is designed to compensate the shortcoming of the FNN backstepping controller. All adaptive learning algorithms in the adaptive FNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed adaptive FNN control system is verified by simulation results.
文摘The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) to construct a feedforward/feedback control scheme to regulate the air-fuel ratio. Using fuzzy neural networks, a fuzzy neural hybrid controller is obtained based on PI controller. The new controller, which can adjust parameters online, has been tested in transient air-fuel ratio control of a CNG engine.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
文摘A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simulation results indicate that fuzzy recurrent neural network controller has perfect dynamic and static performances .
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11401243 and 61403157)the Foundation for Distinguished Young Talents in Higher Education of Anhui Province,China(Grant No.GXYQZD2016257)+3 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.GK201504002)the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(Grant Nos.KJ2015A256 and KJ2016A665)the Natural Science Foundation of Anhui Province,China(Grant No.1508085QA16)the Innovation Funds of Graduate Programs of Shaanxi Normal University,China(Grant No.2015CXB008)
文摘In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors, are employed to approximate the unknown nonlinear functions. Based on the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters, fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are given to show the effectiveness of the proposed method.
文摘为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。