期刊文献+
共找到563篇文章
< 1 2 29 >
每页显示 20 50 100
Fuzzy least squares support vector machine soft measurement model based on adaptive mutative scale chaos immune algorithm 被引量:8
1
作者 王涛生 左红艳 《Journal of Central South University》 SCIE EI CAS 2014年第2期593-599,共7页
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou... In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%. 展开更多
关键词 CHAOS immune algorithm fuzzy support vector machine
在线阅读 下载PDF
Fuzzy smooth support vector machine with different smooth functions 被引量:5
2
作者 Chuandong Qin Sanyang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期460-466,共7页
Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G... Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM). 展开更多
关键词 smooth support vector machine (SSVM) fuzzy sig- moid function polynomial smooth function fuzzy membership Broyden-Fletcher-Gddfarb-Shanno (BFGS).
在线阅读 下载PDF
Convective clouds detection in satellite cloud image using fast fuzzy support vector machine 被引量:1
3
作者 Fei Gong Wei Jin +2 位作者 Wenzhe Tian Randi Fu Caifen He 《光电工程》 CAS CSCD 北大核心 2017年第9期872-881,共10页
Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by nois... Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection. 展开更多
关键词 《光电工程》 英文摘要 期刊 编辑工作
在线阅读 下载PDF
A soft-sensing model on hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine
4
作者 黄志雄 何清华 《Journal of Central South University》 SCIE EI CAS 2014年第5期1827-1832,共6页
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an... In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way. 展开更多
关键词 fuzzy support vector machine hydraulic excavator backhoe vibration excavating resistance soft-sensing technique
在线阅读 下载PDF
Classification using wavelet packet decomposition and support vector machine for digital modulations 被引量:4
5
作者 Zhao Fucai Hu Yihua Hao Shiqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期914-918,共5页
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT... To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications. 展开更多
关键词 modulation classification wavelet packet transform modulus maxima matrix support vector machine fuzzy density.
在线阅读 下载PDF
Generalized Predictive Control with Online Least Squares Support Vector Machines 被引量:41
6
作者 LI Li-Juan SU Hong-Ye CHU Jian 《自动化学报》 EI CSCD 北大核心 2007年第11期1182-1188,共7页
这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lag... 这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lagrange 的绝对值从最后一个采样时期更多样地决定。当增加新数据对并且删除存在的时,纸给模型参数的递归的算法分别地,一个大矩阵的倒置被避免,存储器能被算法完全控制。非线性的 LS-SVM 模型在每个采样时期在 GPC 算法被使用。抵销过程的 pH 上的概括预兆的控制的实验显示出建议算法的有效性和实物。 展开更多
关键词 普遍预测控制 支持向量机 联机模型 pH补偿过程 模糊控制
在线阅读 下载PDF
Adaptive support vector machine decision feedback equalizer
7
作者 Sumin Zhang Shu Li Donglin Su 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期452-461,共10页
An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.A... An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.An adaptive non-singleton fuzzy support vector machine decision feedback equalizer(ANSFSVMDFE) is also presented,it adopts the non-singleton fuzzy Gaussian kernel function with similar characteristic of pre-filter and is modified with a space transformation based approach.Simulations under nonlinear time variant channels show that ASVM-DFE and ANSFSVM-DFE perform very well on nonlinear equalization and ANSFSVM-DFE acts especially well in resisting abrupt interference. 展开更多
关键词 non-singleton fuzzy system support vector machine(SVM) EQUALIZER decision feedback.
在线阅读 下载PDF
基于RTSWMFE,IS-GSE与COOT-SVM的行星齿轮箱故障诊断
8
作者 戚晓利 杨艳 +1 位作者 崔创创 程主梓 《振动.测试与诊断》 北大核心 2025年第1期132-139,205,共9页
针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃pre... 针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃preserving manifold embedding,简称IS⁃GSE)和白骨顶优化算法支持向量机(coot optimization algorithm support vector machine,简称COOT⁃SVM)的行星齿轮箱故障诊断方法。首先,利用RTSWMFE提取高维故障特征信息;其次,采用IS⁃GSE对高维特征进行降维,提取出敏感、低维的特征;最后,将低维特征输入COOT⁃SVM中进行识别分类。行星齿轮箱故障诊断实验结果表明:IS⁃GSE方法采用余弦相似度与欧式距离相结合的距离度量方式,并融入监督学习思想,降维效果较佳;COOT⁃SVM方法对经RTSWMFE和IS⁃GSE二次提取的故障特征识别精度达到100%。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移加权多尺度模糊熵 改进监督型几何和统计保持流形嵌入 白骨顶优化算法优化支持向量机
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
9
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(fsvm) adaptive mutation multi-classification.
在线阅读 下载PDF
基于PCA_Fuzzy_PSO_SVC的底板突水危险性评价 被引量:40
10
作者 施龙青 谭希鹏 +3 位作者 王娟 季小凯 牛超 徐东晶 《煤炭学报》 EI CAS CSCD 北大核心 2015年第1期167-171,共5页
为解决煤层底板突水预测难题,提出了基于主成分分析、模糊数学、粒子群算法以及支持向量机分类的底板突水危险性评价模型,模型以支持向量机分类为基础,通过主成分分析将多种影响底板突水的因子归纳为构造主成分、水文地质主成分、煤层... 为解决煤层底板突水预测难题,提出了基于主成分分析、模糊数学、粒子群算法以及支持向量机分类的底板突水危险性评价模型,模型以支持向量机分类为基础,通过主成分分析将多种影响底板突水的因子归纳为构造主成分、水文地质主成分、煤层信息主成分及开采条件主成分,其中构造主成分及水文地质主成分为影响底板是否突水的最主要控制因素,模糊化主成分因子,利用粒子群算法优化支持向量机分类参数,根据已有数据资料建立了评价模型,并将该模型应用于实际中,得到了准确的预测结果,为底板突水危险性评价提供了一种新的方法。 展开更多
关键词 底板突水 危险性评价 主成分分析 模糊数学 粒子群算法 支持向量机
在线阅读 下载PDF
基于FSVM改良隶属度的发动机振动故障识别 被引量:5
11
作者 白斌 白广忱 林学柱 《振动与冲击》 EI CSCD 北大核心 2013年第20期23-28,共6页
为了更好的对航空发动机整机振动进行故障诊断和识别,提出了改良的FSVM隶属度和多类隶属度与信息熵的融合定量分析方法,并且和传统的FSVM隶属度分析方法进行比较。对传统的FSVM的模糊隶属度函数改良后建立了多类模糊隶属度计算模型。通... 为了更好的对航空发动机整机振动进行故障诊断和识别,提出了改良的FSVM隶属度和多类隶属度与信息熵的融合定量分析方法,并且和传统的FSVM隶属度分析方法进行比较。对传统的FSVM的模糊隶属度函数改良后建立了多类模糊隶属度计算模型。通过实验实例验证了该多类模糊隶属度与信息熵相结合的技术对于航空发动机整机振动状态评估和故障诊断识别非常有效,计算出振动故障模式与故障原因之间的权值,建立了一个多参数的发动机振动状态分析模型;并对各类振动原因对发动机整体状态的影响进行定量分析,为发动机的振动抑制提供量化参考指标。 展开更多
关键词 模糊支持向量机 信息熵 多类模糊隶属度 模糊隶属度 故障诊断识别
在线阅读 下载PDF
基于FSVM的转炉终点光辐射状态识别 被引量:4
12
作者 周木春 赵琦 +1 位作者 陈延如 邵艳明 《红外与激光工程》 EI CSCD 北大核心 2018年第7期312-317,共6页
针对转炉冶炼终点传统人工肉眼看火判断存在着诸多不确定性问题,研究了一种基于模糊支持向量机的光辐射状态识别实现转炉终点判断的方法。设计了非接触式炉口光辐射采集系统,基于炉口火焰辐射规律分析,分别提取了通过高斯函数拟合表征... 针对转炉冶炼终点传统人工肉眼看火判断存在着诸多不确定性问题,研究了一种基于模糊支持向量机的光辐射状态识别实现转炉终点判断的方法。设计了非接触式炉口光辐射采集系统,基于炉口火焰辐射规律分析,分别提取了通过高斯函数拟合表征光谱整体特征的三参数和两个发射峰离散谱参数作为支持向量机的输入,通过相关性分析选出生产过程中氧量、动枪幅度、爽枪时间、加料量参数构建子样本特征量,采用样本到类间距离的方法计算隶属度因子,建立了模糊支持向量机识别模型并进行了测试实验。实验结果表明,提出的方法对不同操作工况下的终点光辐射识别精度优于人工方法和传统SVM方法,可为转炉终点的准确判断提供依据。 展开更多
关键词 光谱分析 识别 模糊支持向量机 转炉炼钢
在线阅读 下载PDF
基于KPCA-FSVM的液压泵可靠性寿命分布识别 被引量:5
13
作者 景涛 曹克强 +1 位作者 胡良谋 高斌 《中国机械工程》 EI CAS CSCD 北大核心 2015年第19期2595-2600,共6页
为了准确快速识别出液压泵的可靠性寿命分布模型,提出了一种基于核主元分析和模糊支持向量机的可靠性寿命分布模型识别方法。该方法充分利用核主元分析非线性特征提取的优势和模糊支持向量机良好的分类能力,建立了适合可靠性寿命分布识... 为了准确快速识别出液压泵的可靠性寿命分布模型,提出了一种基于核主元分析和模糊支持向量机的可靠性寿命分布模型识别方法。该方法充分利用核主元分析非线性特征提取的优势和模糊支持向量机良好的分类能力,建立了适合可靠性寿命分布识别的模糊支持向量机模型,并将其应用于液压泵可靠性寿命分布模型识别。仿真实验结果表明,该模型能够降低计算的复杂度,具有良好的泛化能力,能够准确地识别出液压泵无故障工作时间数据所属的寿命分布类型。 展开更多
关键词 核主元分析 模糊支持向量机 寿命分布模型 液压泵 无故障工作时间
在线阅读 下载PDF
FSVM在图像低层特征与高层语义关联中的应用 被引量:4
14
作者 成洁 石跃祥 易璨 《小型微型计算机系统》 CSCD 北大核心 2007年第6期1119-1122,共4页
基于内容的图像检索中,针对图像的低层可视特征与高层语义特征之间的鸿沟,提出了一种新的基于模糊支持向量机(FSVM)的语义关联方法.重点分析了支持向量机语义关联中存在的误分、拒分现象,在传统支持向量机中引入模糊隶属度函数,解决了... 基于内容的图像检索中,针对图像的低层可视特征与高层语义特征之间的鸿沟,提出了一种新的基于模糊支持向量机(FSVM)的语义关联方法.重点分析了支持向量机语义关联中存在的误分、拒分现象,在传统支持向量机中引入模糊隶属度函数,解决了不可分区域问题.通过对图像低层特征的分析,提取了颜色和形状特征向量(221维),将它们作为模糊支持向量机的输入向量,对图像类进行学习,建立图像低层特征与高层语义的关联.并应用于鸟类、花卉、海洋以及建筑物等几个典型的语义类别检索,实验结果表明,该方法可适应于不同用户的图像检索,在相同的条件下可以达到比支持向量机方法更为理想的语义关联效果,提高了检索性能. 展开更多
关键词 基于内容的图像检索 低层特征 高层语义 模糊支持向量机(fsvm) 支持向量机(SVM)
在线阅读 下载PDF
基于紧密度FSVM新算法及在故障检测中的应用 被引量:6
15
作者 陶新民 徐晶 +1 位作者 杜宝祥 徐勇 《振动工程学报》 EI CSCD 北大核心 2009年第4期418-424,共7页
针对传统的模糊支持向量机(FSVM)算法对边缘噪声敏感的不足,提出一种基于非线性紧密度和K最近邻方法(KNN)相结合的FSVM算法。该方法在计算样本隶属度大小时既考虑样本与类中心的距离,类中样本的紧密度,同时还考虑与其他类样本间的关系,... 针对传统的模糊支持向量机(FSVM)算法对边缘噪声敏感的不足,提出一种基于非线性紧密度和K最近邻方法(KNN)相结合的FSVM算法。该方法在计算样本隶属度大小时既考虑样本与类中心的距离,类中样本的紧密度,同时还考虑与其他类样本间的关系,其中紧密度的计算采用非线性数据分布描述方法进而使计算的隶属度更精确。实验结果同传统FSVM及其他改进的FSVM算法进行比较,对于国际标准测试数据及轴承故障检测问题,结果验证了建议算法具有很强的鲁棒性及高效的检测性能。 展开更多
关键词 故障检测 模糊支持向量机 K近邻方法 紧密度
在线阅读 下载PDF
基于改进FSVM的数据挖掘分类算法 被引量:6
16
作者 赵小强 张露 《兰州理工大学学报》 CAS 北大核心 2016年第2期101-106,共6页
针对模糊支持向量机(FSVM)应用于数据挖掘分类中存在对大样本集训练速度慢以及对噪声点敏感影响分类正确率的问题,提出一种基于改进FSVM的数据挖掘分类算法.该算法首先预选有效的候选支持向量,减小训练样本数目,提高训练速度;其次定义... 针对模糊支持向量机(FSVM)应用于数据挖掘分类中存在对大样本集训练速度慢以及对噪声点敏感影响分类正确率的问题,提出一种基于改进FSVM的数据挖掘分类算法.该算法首先预选有效的候选支持向量,减小训练样本数目,提高训练速度;其次定义一种新的隶属度函数,增强支持向量对构建模糊支持向量机的作用;最后将近邻样本密度应用于隶属度函数设计,降低噪声点或野值点对分类的影响提高分类正确率.实验结果表明,该算法在训练样本数目较大时训练速度和分类正确率都有提高. 展开更多
关键词 数据挖掘 分类算法 模糊支持向量机(fsvm) 近邻样本密度
在线阅读 下载PDF
基于FSVM改进隶属度的发动机振动性能分析 被引量:4
17
作者 郭秩维 费成巍 白广忱 《推进技术》 EI CAS CSCD 北大核心 2013年第2期263-268,共6页
为了更有效地掌握航空发动机振动性能的影响因素,提出了改进FSVM信息熵的融合定量分析方法。首先,对模糊支持向量机(FSVM)的模糊隶属度函数进行改进,建立多类模糊隶属度计算模型。再将该方法应用到航空发动机整机振动性能评估,计算出振... 为了更有效地掌握航空发动机振动性能的影响因素,提出了改进FSVM信息熵的融合定量分析方法。首先,对模糊支持向量机(FSVM)的模糊隶属度函数进行改进,建立多类模糊隶属度计算模型。再将该方法应用到航空发动机整机振动性能评估,计算出振动故障模式与故障原因之间的权值,建立了一个多参数的发动机振动性能分析模型;并对各类振动原因对发动机整体性能的影响进行定量分析,为发动机的振动抑制提供量化参考指标。最后,通过与实际经验作比较,验证了该方法是可行和有效的。 展开更多
关键词 航空发动机 模糊支持向量机 信息熵 模糊隶属度 性能分析
在线阅读 下载PDF
基于DBSCAN与FSVM的半导体生产线成品率预测方法 被引量:9
18
作者 邱明辉 曹政才 +1 位作者 刘民 刘雪莲 《计算机集成制造系统》 EI CSCD 北大核心 2016年第11期2594-2601,共8页
成品率是半导体生产线上的关键性能指标,对其进行预测分析能够有效控制芯片的生产成本、提高芯片质量,而芯片缺陷问题是制约成品率水平的关键因素。因此,研究一种密度聚类与模糊支持向量机相融合的半导体生产线成品率预测方法。首先,采... 成品率是半导体生产线上的关键性能指标,对其进行预测分析能够有效控制芯片的生产成本、提高芯片质量,而芯片缺陷问题是制约成品率水平的关键因素。因此,研究一种密度聚类与模糊支持向量机相融合的半导体生产线成品率预测方法。首先,采用密度聚类方法对晶圆缺陷聚集特性进行分析,获取缺陷分布模式参数和密度参数,作为成品率预测模型的输入参数;然后,针对缺陷与成品率之间存在的模糊关系,利用模糊规则并结合支持向量机方法构建半导体生产线成品率预测模型;最后利用成品率预测结果对晶圆缺陷聚集特性进行定性分析,确定缺陷问题的来源,并提出相应的改善措施。通过仿真实验表明,所提方法的预测精度优于常用的泊松模型和二项式模型,具有更好的可行性。 展开更多
关键词 半导体生产线 成品率 基于密度的聚类方法 模糊支持向量机
在线阅读 下载PDF
基于LBP和FSVM的视频文字定位方法 被引量:2
19
作者 李丽洁 李金 +1 位作者 宋阳 王磊 《计算机工程》 CAS CSCD 北大核心 2011年第24期144-146,共3页
提出一种基于局部二值模式(LBP)和模糊支持向量机(FSVM)的视频文字定位方法。利用边缘信息和形态学操作进行文字粗检测,采用投影直方图和启发式规则形成候选文字区域,提取LBP作为纹理特征,用FSVM对候选文字区域进行精确定位,生成最终的... 提出一种基于局部二值模式(LBP)和模糊支持向量机(FSVM)的视频文字定位方法。利用边缘信息和形态学操作进行文字粗检测,采用投影直方图和启发式规则形成候选文字区域,提取LBP作为纹理特征,用FSVM对候选文字区域进行精确定位,生成最终的文字块。实验结果表明,该方法具有较好的视频文字定位能力且鲁棒性较强。 展开更多
关键词 视频文字 特征提取 纹理 局部二值模式 模糊支持向量机
在线阅读 下载PDF
基于FSVM的雷达多目标识别 被引量:13
20
作者 郑春红 郑贵文 焦李成 《系统工程与电子技术》 EI CSCD 北大核心 2003年第11期1358-1361,共4页
重点分析了支撑矢量机多分类问题中存在的误分、拒分现象,针对雷达目标提出解决这一现象的模糊支撑矢量机。采用模糊支撑矢量机的分类机理对样本数据有限且残缺不全的高分辨一维雷达距离像进行多目标识别。实测数据(4种飞机雷达距离像)... 重点分析了支撑矢量机多分类问题中存在的误分、拒分现象,针对雷达目标提出解决这一现象的模糊支撑矢量机。采用模糊支撑矢量机的分类机理对样本数据有限且残缺不全的高分辨一维雷达距离像进行多目标识别。实测数据(4种飞机雷达距离像)的多目标识别结果表明,模糊支撑矢量机与一般多类支撑矢量机相比在多目标识别时简单易行,而且在识别率上有显著的提高。 展开更多
关键词 雷达目标 多目标识别 模糊支撑矢量机
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部