Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves...Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.展开更多
Cognitive radio is being widely discussed,and resource allocation scheme is drawing a lot of attention.Although the existed resource allocation strategies have successfully enhanced spectrum efficiency,some critical c...Cognitive radio is being widely discussed,and resource allocation scheme is drawing a lot of attention.Although the existed resource allocation strategies have successfully enhanced spectrum efficiency,some critical challenges still remain unanswered such as the jointly consideration of the efficiency and fairness,the rational description of the spectrum resources,and the execution mode of the spectrum allocation.This paper presents a system level dynamic frequency spectrum allocation scheme based on a central heterogeneous network architecture,evaluates the matching degree of the spectrum demand and the available spectrum resources with corresponding matrices,jointly considers the efficiency and fairness of different cognitive radio systems.Simulation results and the application scenario are also presented and analyzed.展开更多
We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variati...We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.展开更多
We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found ...We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.展开更多
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control...The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.展开更多
In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement a...In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement and the extended differentiate and cross multiply al-gorithm(DCMA)has been proposed.Firstly,the improved DFT algorithm is used to accurately obtain the distance window of human body.Secondly,phase ambiguity in phase extraction is avoided based on extended DCMA algorithm.Then,the spectrum range of refinement is determ-ined according to the peak position of the spectrum,and the respiratory and heartbeat frequency information is obtained by using chirp z-transform(CZT)algorithm to perform local spectrum re-finement.For verification,this paper has simulated the radar echo signal modulated by the simu-lated cardiopulmonary signal according to the proposed algorithm.By recovering the simulated car-diopulmonary signal,the high-precision respiratory and heartbeat frequency have been obtained.The results show that the proposed algorithm can effectively restore human breathing and heart-beat signals,and the relative error of frequency estimation is basically kept below 1.5%.展开更多
Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray...Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.展开更多
Investigation of spatial distribution of oil and gas resource and accurate prediction of the geographic location of its undiscovered resource is significant for reducing exploration risk and improving exploration bene...Investigation of spatial distribution of oil and gas resource and accurate prediction of the geographic location of its undiscovered resource is significant for reducing exploration risk and improving exploration benefit.A new method for predicting spatial distribution of oil resource is discussed in this paper.It consists of prediction of risk probability in petroleum exploration and simulation of hydrocarbon abundance. Exploration risk probability is predicted by multivariate statistics,fuzzy mathematics and information processing techniques.A spatial attribute database for sample wells was set up and the Mahalanobis distance and Fuzzy value of given samples were obtained.Then,the Bayesian formula was used to calculate the hydrocarbon-bearing probability at the area of exploration wells.Finally,a hydrocarbon probability template is formed and used to forecast the probability of the unknown area. The hydrocarbon abundance is simulated based on Fourier integrals,frequency spectrum synthesis and fractal theory.Firstly,the fast Fourier transformation(FFT) is used to transform the known hydrocarbon abundance from the spatial domain to the frequency domain,then,frequency spectrum synthesis is used to produce the fractal frequency spectrum,and FFT is applied to get the phase information of hydrocarbon-bearing probability.Finally,the frequency spectrum simulation is used to calculate the renewed hydrocarbon abundance in the play. This method is used to predict the abundance and possible locations of the undiscovered petroleum accumulations in the Nanpu Sag of the Bohai Bay Basin,China.The prediction results for the well-explored onshore area of the northern Nanpu Sag agree well with the actual situations.For the less-explored offshore areas in the southern Nanpu Sag,the prediction results suggest high hydrocarbon abundance in Nanpu-1 and Nanpu-2,providing a useful guiding for future exploration.展开更多
A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of ...A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.展开更多
Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of su...Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.展开更多
This paper introduces a new three dimensional autonomous system with five equilibrium points. It demonstrates complex chaotic behaviours within a wide range of parameters, which are described by phase portraits, Lyapu...This paper introduces a new three dimensional autonomous system with five equilibrium points. It demonstrates complex chaotic behaviours within a wide range of parameters, which are described by phase portraits, Lyapunov exponents, frequency spectrum, etc. Analysis of the bifurcation and Poincar@ map is used to reveal mechanisms of generating these complicated phenomena. The corresponding electronic circuits are designed, exhibiting experimental chaotic attractors in accord with numerical simulations. Since frequency spectrum analysis shows a broad frequency bandwidth, this system has perspective of potential applications in such engineering fields as secure communication.展开更多
基金the National Basic Research Program of China (Nos.2005 CB221504 and 2010CB226805)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT (No.09KF08)the Foundation of the Henan Educational Committee (No.2010 A440003)
文摘Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.
文摘Cognitive radio is being widely discussed,and resource allocation scheme is drawing a lot of attention.Although the existed resource allocation strategies have successfully enhanced spectrum efficiency,some critical challenges still remain unanswered such as the jointly consideration of the efficiency and fairness,the rational description of the spectrum resources,and the execution mode of the spectrum allocation.This paper presents a system level dynamic frequency spectrum allocation scheme based on a central heterogeneous network architecture,evaluates the matching degree of the spectrum demand and the available spectrum resources with corresponding matrices,jointly considers the efficiency and fairness of different cognitive radio systems.Simulation results and the application scenario are also presented and analyzed.
基金Project supported by the National Key R&D Program of China(Grant No.2019YFA0705000)Leading-edge Technology Program of Jiangsu Natural Science Foundation,China(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861,11690031,11974178,and 11627810).
文摘We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.
基金Supported by the Ministry of Education and Science of Ukraine under Grant No 0117U002253
文摘We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096 and 11604199the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500the Higher Education Key Program of He'nan Province under Grant Nos 17A140025 and 16A140030
文摘The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.
文摘In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement and the extended differentiate and cross multiply al-gorithm(DCMA)has been proposed.Firstly,the improved DFT algorithm is used to accurately obtain the distance window of human body.Secondly,phase ambiguity in phase extraction is avoided based on extended DCMA algorithm.Then,the spectrum range of refinement is determ-ined according to the peak position of the spectrum,and the respiratory and heartbeat frequency information is obtained by using chirp z-transform(CZT)algorithm to perform local spectrum re-finement.For verification,this paper has simulated the radar echo signal modulated by the simu-lated cardiopulmonary signal according to the proposed algorithm.By recovering the simulated car-diopulmonary signal,the high-precision respiratory and heartbeat frequency have been obtained.The results show that the proposed algorithm can effectively restore human breathing and heart-beat signals,and the relative error of frequency estimation is basically kept below 1.5%.
文摘Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.
文摘Investigation of spatial distribution of oil and gas resource and accurate prediction of the geographic location of its undiscovered resource is significant for reducing exploration risk and improving exploration benefit.A new method for predicting spatial distribution of oil resource is discussed in this paper.It consists of prediction of risk probability in petroleum exploration and simulation of hydrocarbon abundance. Exploration risk probability is predicted by multivariate statistics,fuzzy mathematics and information processing techniques.A spatial attribute database for sample wells was set up and the Mahalanobis distance and Fuzzy value of given samples were obtained.Then,the Bayesian formula was used to calculate the hydrocarbon-bearing probability at the area of exploration wells.Finally,a hydrocarbon probability template is formed and used to forecast the probability of the unknown area. The hydrocarbon abundance is simulated based on Fourier integrals,frequency spectrum synthesis and fractal theory.Firstly,the fast Fourier transformation(FFT) is used to transform the known hydrocarbon abundance from the spatial domain to the frequency domain,then,frequency spectrum synthesis is used to produce the fractal frequency spectrum,and FFT is applied to get the phase information of hydrocarbon-bearing probability.Finally,the frequency spectrum simulation is used to calculate the renewed hydrocarbon abundance in the play. This method is used to predict the abundance and possible locations of the undiscovered petroleum accumulations in the Nanpu Sag of the Bohai Bay Basin,China.The prediction results for the well-explored onshore area of the northern Nanpu Sag agree well with the actual situations.For the less-explored offshore areas in the southern Nanpu Sag,the prediction results suggest high hydrocarbon abundance in Nanpu-1 and Nanpu-2,providing a useful guiding for future exploration.
基金supported by the Key Project of Science and Technology in an Action of Shanghai Scientific and Technological Innovation (No. 09231201600)the National Natural Science Foundation of China(No. 50823004)the Science and Technology Department of Sichuan Province
文摘A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.
基金supported by the National Key R&D Pro gram (2017YFB0902901)National Nature Science Founda tion of China (51725702, 51627811, 51707064)。
文摘Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant No. 10771088)Natural Science Foundation of Jiangsu Province,China (Grant No. 2007098)+3 种基金Outstanding Personnel Program in Six Fields of Jiangsu Province,China (Grant No. 6-A-029)National Natural Science (Youth) Foundation of China (Grant No. 10801140)Youth Foundation of Chongqing Normal University,China (Grant No. 08XLQ04)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 09B 202Z)
文摘This paper introduces a new three dimensional autonomous system with five equilibrium points. It demonstrates complex chaotic behaviours within a wide range of parameters, which are described by phase portraits, Lyapunov exponents, frequency spectrum, etc. Analysis of the bifurcation and Poincar@ map is used to reveal mechanisms of generating these complicated phenomena. The corresponding electronic circuits are designed, exhibiting experimental chaotic attractors in accord with numerical simulations. Since frequency spectrum analysis shows a broad frequency bandwidth, this system has perspective of potential applications in such engineering fields as secure communication.