期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
基于GBD数据库分析与预测中国鼻咽癌疾病负担
1
作者 宋业勋 刘霞静 +1 位作者 张永全 李和清 《中南大学学报(医学版)》 北大核心 2025年第4期675-683,共9页
目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流... 目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流行病学依据。方法:选取年龄标化发病率、病死率、伤残调整寿命年(disability adjusted life year,DALY)率作为疾病负担的评价指标,按照不同年龄、性别、社会人口学指数及其相关危险因素进行分层分析,同时应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和贝叶斯年龄-时期-队列分析模型(Bayesian age-period-cohort,BAPC)将年龄标化发病率预测至2050年。结果:2021年中国鼻咽癌年龄标化发病率、病死率、DALY率分别为3.4/10万、1.5/10万、48.7/10万,均高于同期全球水平。在所有年龄段,中国男性年龄标化发病率、病死率、DALY率均高于女性。中国鼻咽癌的疾病负担从1990至2021年随着社会人口学指数(socio-demographic index,SDI)的增高逐渐降低。中国归因于饮酒、吸烟、职业甲醛暴露的鼻咽癌疾病负担占比均高于全球水平,且在男性中尤为显著。模型预测中国及全球男性、女性、全人群的年龄标化发病率均提示从2022至2050年呈上升趋势。结论:既往30年中国鼻咽癌的疾病负担随着SDI的升高逐渐降低,但仍高于同期全球水平。同时,中国鼻咽癌的年龄标化发病率在未来30年呈上升趋势。中国仍需进一步增加医疗资源的投入以应对鼻咽癌的防控与诊疗,尤其针对高风险男性群体。 展开更多
关键词 鼻咽癌 疾病负担 社会人口学指数 贝叶斯年龄-时期-队列分析模型 差分自回归移动平均模型
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
2
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
模型和数据联合驱动的ARIMA-IDSSA-LSSVM建筑安全事故预测
3
作者 曹红梅 陈元 《自然灾害学报》 北大核心 2025年第2期129-139,共11页
针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improv... 针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improved adaptive salp swarm algorithm optimized least squares support vector machine,IDSSA-LSSVM)的组合预测模型。首先利用ARIMA模型获得时序数据中线性部分,利用IDSSA-LSSVM模型分析ARIMA模型获得的残差,获得时序数据中非线性部分;然后通过线性部分和非线性部分相加获得最终组合预测值;最后通过2010—2020年房屋市政工程生产安全事故数据对所提算法进行验证。结果表明,所提预测模型在E_(rmse)上较其他算法分别下降73.73%、77.21%、46.09%、46.80%、78.19%,在E_(mae)上较其他算法分别下降74.20%、77.44%、48.15%、48.85%、77.50%,在E_(mape)上较其他算法分别下降84.95%、87.77%、75.97%、88.49%、80.27%。在不同规模的数据集下,文中算法在E_(rmse)指标下均最优。同时能够通过预测未来阶段事故,提供辅助决策。表明ARIMA-SSA-LSSVM组合模型能够充分挖掘建筑安全事故数据的隐藏信息,在准确性、泛化性和应用性3个角度均表现不错,优势明显。 展开更多
关键词 建筑安全 事故预测 联合驱动 差分自回归移动平均模型 支持向量机
在线阅读 下载PDF
基于自回归积分滑动平均模型的无线传感网络通信传输信号延迟消除方法
4
作者 崔蕾 王同 《传感技术学报》 北大核心 2025年第3期543-549,共7页
为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程... 为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程的步骤和约束条件,并以此构建无线传感网络通信传输的优化目标函数,引入免疫克隆蛙跳算法对目标函数进行求解,获取最优的传输方案。仿真分析表明,所提方法的延迟预测误差和端到端延迟误差低于0.01 s,能量消耗最大值为6.4 W,平均丢包率最大值为0.286%。上述结果证明了所提方法可以有效准确预测和消除无线传感网络通信传输信号延迟。 展开更多
关键词 无线传感网络 传输信号 延迟消除 自回归积分滑动平均模型 小波神经网络
在线阅读 下载PDF
考虑碳排放权交易风险的能源运营商-区域综合能源系统联盟混合博弈优化调度
5
作者 刘英培 信明垚 +1 位作者 秦浩然 单泓元 《电力自动化设备》 北大核心 2025年第6期15-22,49,共9页
随着碳排放权交易市场的不断完善,区域综合能源系统(RIES)在参与碳排放权交易时应充分考虑碳价波动的影响。为此,构建以能源运营商为主体、RIES联盟为从体的混合博弈架构。主体以最大化自身效益为目标制定购售电价策略,从体以供能成本... 随着碳排放权交易市场的不断完善,区域综合能源系统(RIES)在参与碳排放权交易时应充分考虑碳价波动的影响。为此,构建以能源运营商为主体、RIES联盟为从体的混合博弈架构。主体以最大化自身效益为目标制定购售电价策略,从体以供能成本和碳交易成本之和最小为目标进行热能交互,建立RIES联盟合作博弈模型。碳交易成本计及碳排放权价格的不确定性,利用自回归差分移动平均模型及广义自回归条件异方差模型预测调度日的碳价,结合条件风险价值,通过设定不同的风险偏好系数及置信度对碳交易价格波动风险进行量化。基于纳什谈判模型将合作博弈问题拆分成2个子问题,在降低联盟总成本的同时,合理分配RIES联盟的合作收益。通过仿真算例结合遗传算法验证所提策略的有效性,结果表明所提模型可以有效平衡系统的经济性和低碳性,降低碳排放权价格波动风险对调度决策的影响。 展开更多
关键词 区域综合能源系统 碳排放权交易风险 混合博弈 纳什谈判 条件风险价值 自回归差分移动平均模型 广义自回归条件异方差模型 优化调度
在线阅读 下载PDF
基于FARIMA模型的Internet时延预测 被引量:23
6
作者 宋杨 涂小敏 费敏锐 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第4期757-763,共7页
针对Internet时延具有自相似性这一特点,采用自回归分数滑动平均模型(fractal autoregressive integrated moving aver-age,FARIMA)对Internet时延建模,提出了基于概率上限的Internet时延预报方法,即保证实际时延按一定概率在预测时延... 针对Internet时延具有自相似性这一特点,采用自回归分数滑动平均模型(fractal autoregressive integrated moving aver-age,FARIMA)对Internet时延建模,提出了基于概率上限的Internet时延预报方法,即保证实际时延按一定概率在预测时延范围之内。通过对实测时延数据进行预测对比,结果表明基于FARIMA模型的预测效果要优于基于ARMA(auto regnessive and mov-ing average)模型的预测效果。 展开更多
关键词 自相似性 Internet时延 farima模型
在线阅读 下载PDF
基于FARIMA模型的流量抽样测量方法 被引量:6
7
作者 潘乔 罗辛 +1 位作者 王高丽 裴昌幸 《计算机工程》 CAS CSCD 北大核心 2010年第15期7-8,11,共3页
目前的流量抽样测量方法主要基于传统的数学理论,并没有考虑到实际网络流量的特征,基于此,提出基于FARIMA流量预测的抽样方法,根据流量预测值动态调整抽样率,既减轻了CPU的负载,又节省了存储空间。通过对比实际使用中的流量抽样测量方... 目前的流量抽样测量方法主要基于传统的数学理论,并没有考虑到实际网络流量的特征,基于此,提出基于FARIMA流量预测的抽样方法,根据流量预测值动态调整抽样率,既减轻了CPU的负载,又节省了存储空间。通过对比实际使用中的流量抽样测量方法取得的数据报文样本均值和Hurst参数,表明该方法能够正确体现原始数据的流量行为统计特征。 展开更多
关键词 网络测量 流量抽样 自回归分数整合滑动平均模型 流量预测
在线阅读 下载PDF
基于FARIMA的网络建模与性能分析 被引量:5
8
作者 胡玉清 谭献海 宋正阳 《计算机工程与设计》 CSCD 北大核心 2008年第18期4666-4668,4714,共4页
给出了利用FARIMA模型进行建模、拟合实际网络流量的方法和参数估计的具体步骤,研究了长短相关对网络性能的影响。研究结果表明,不论长相关还是短相关,FARIMA模型对实际业务拟合二者都非常接近,当缓存较小时,网络性能将由短相关特性支配... 给出了利用FARIMA模型进行建模、拟合实际网络流量的方法和参数估计的具体步骤,研究了长短相关对网络性能的影响。研究结果表明,不论长相关还是短相关,FARIMA模型对实际业务拟合二者都非常接近,当缓存较小时,网络性能将由短相关特性支配,而且随着缓存增加,长相关业务下系统性能的衰减要比短相关业务下衰减的慢,这些发现对今后网络设计性能研究具有重要的参考价值。 展开更多
关键词 网络业务建模 长相关 自相似 farima 网络性能
在线阅读 下载PDF
适合西藏地区的归一化植被指数预测模型构建及验证
9
作者 孟慧美 吴凌霄 +1 位作者 宣越健 米玛旺堆 《气候与环境研究》 北大核心 2025年第2期199-211,共13页
基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地... 基于差分自回归移动平均(ARIMA)方法、随机森林(RF)方法、Prophet方法构建适合西藏地区的归一化植被指数(Normalized Difference Vegetation Index,NDVI)预测模型,利用羊八井地区2000~2021年MODIS遥感NDVI数据进行了验证,结果表明:该地区植被覆盖率总体呈现不明显减少趋势;3个预测模型中,RF预测精度最高,其归一化均方根误差、平均绝对百分比误差、决定系数,分别达到了6.92%、4.04%、0.9;小波变换方法能有效提高模型预测精度;组合模型可以提高预测精度,其中误差倒数权重组合模型优于平均权重和方差倒数加权组合模型。因此可以利用RF等机器学习方法结合小波变换、组合模型在西藏地区进行NDVI预测,为生态环境保护和农牧业生产决策提供科学指导。 展开更多
关键词 归一化植被指数(NDVI)预测模型 随机森林(RF)方法 差分自回归移动平均(ARIMA)方法 Prophet方法 小波变换
在线阅读 下载PDF
基于FARIMA模型的网络排队性能分析 被引量:2
10
作者 饶云华 曹阳 +1 位作者 杨艳 王习稳 《计算机工程》 EI CAS CSCD 北大核心 2006年第23期13-14,20,共3页
利用能够同时反映通信量长程和短程相关性的FARIMA模型,研究了长程相关和短程相关对于FIFO排队系统性能的影响,讨论了在给定系统缓存溢出概率条件下,FARIMA模型为输入时,排队队长分布的渐近解析表达式。研究表明,短程相关性在缓存较小时... 利用能够同时反映通信量长程和短程相关性的FARIMA模型,研究了长程相关和短程相关对于FIFO排队系统性能的影响,讨论了在给定系统缓存溢出概率条件下,FARIMA模型为输入时,排队队长分布的渐近解析表达式。研究表明,短程相关性在缓存较小时,对系统队长分布会有影响,但是在自相似存在的情况下,系统的排队长度分布为渐近Weibull分布,与通信量的短程相关性无关。蒙特卡罗仿真分析表明了结果的正确性和有效性。 展开更多
关键词 队长分布 溢出概率 farima 长程相关
在线阅读 下载PDF
基于FARIMA的ARP欺骗入侵检测 被引量:5
11
作者 李启南 《计算机工程》 CAS CSCD 北大核心 2011年第2期139-140,142,共3页
针对ARP网络流量具有自相似性,ARP欺骗会导致ARP网络流量局部突发的特征,在进行理论分析的基础上,提出一种ARP欺骗入侵检测方法。采用适合描述自相似性的FARIMA准确预测ARP网络流量,在线实时计算每个周期实测值和预测值的差值,比较差值... 针对ARP网络流量具有自相似性,ARP欺骗会导致ARP网络流量局部突发的特征,在进行理论分析的基础上,提出一种ARP欺骗入侵检测方法。采用适合描述自相似性的FARIMA准确预测ARP网络流量,在线实时计算每个周期实测值和预测值的差值,比较差值变化率快速准确实现ARP欺骗入侵检测。运行结果证明FARIMA具有先进性,该方法可有效提高ARP欺骗实时入侵检测的检测率,实现追踪ARP欺骗攻击源主机。 展开更多
关键词 ARP欺骗 分形自回归滑动平均混合模型 入侵检测 网络安全 自相似
在线阅读 下载PDF
一类基于FARIMA过程的电梯导轨振动模型
12
作者 安德洪 丁春蕾 +1 位作者 刘嘉焜 许树荆 《机械设计》 CSCD 北大核心 2004年第4期31-33,41,共4页
研究电梯运行中导轨的随机振动时 ,将电梯运行中测得的导轨间距离DGB看作一时间序列 ,发现具有长相关性。常用的整数自回归模型、分数噪声模型都只能片面地描述该类数据的短相关性或长相关性。给出了利用FARIMA(自回归分数整合滑动平均... 研究电梯运行中导轨的随机振动时 ,将电梯运行中测得的导轨间距离DGB看作一时间序列 ,发现具有长相关性。常用的整数自回归模型、分数噪声模型都只能片面地描述该类数据的短相关性或长相关性。给出了利用FARIMA(自回归分数整合滑动平均模型 )拟合DGB的方法 ,该模型可同时刻画实测数据DGB的长相关和短相关特性 ,并通过对实测数据的实验 ,证明了模型的优效性。 展开更多
关键词 电梯 导轨 随机振动 长相关性 整数自回归模型 自回归分数整合滑动平均模型 farima
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
13
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(ARIMA)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
基于FARIMA模型的智能变电站通信流量异常分析 被引量:38
14
作者 郝唯杰 杨强 李炜 《电力系统自动化》 EI CSCD 北大核心 2019年第1期158-167,共10页
随着输变电设备自动化、变电站智能化建设的快速发展,电网信息安全隐患日益凸显。精确可靠的变电站通信网络流量模型建模和异常检测方法已成为预防网络安全问题和识别网络攻击的重要手段。文中在对变电站站控层网络流量行为特性进行分... 随着输变电设备自动化、变电站智能化建设的快速发展,电网信息安全隐患日益凸显。精确可靠的变电站通信网络流量模型建模和异常检测方法已成为预防网络安全问题和识别网络攻击的重要手段。文中在对变电站站控层网络流量行为特性进行分析的基础上,采用分形自回归积分滑动平均(FARIMA)模型对网络流量构建了阈值模型。针对变电站典型的网络攻击模式和流量异常特征,基于运行状态评估算法对某实际变电站站控层流量数据进行分析,并计算典型网络异常概率,从而实现了变电站在网络攻击情形下的安全态势评价。 展开更多
关键词 IEC 61850 分形自回归积分滑动平均模型 智能变电站 通信流量 回归模型
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法 被引量:1
15
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于改进JRD及误差修正的轴承剩余寿命预测方法 被引量:1
16
作者 刘玉山 张旭帮 +2 位作者 王灵梅 孟恩隆 郭东杰 《机电工程》 北大核心 2024年第1期72-80,共9页
目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL... 目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL预测方法。首先,提取了振动信号样本的多域特征指标,利用高斯混合模型(GMM)与指数型权重JRD,得到了样本的后验概率分布向量,再经归一化处理得到置信值(CV);然后,对轴承从初始健康状态退化至当前检查时刻的CV值进行了相空间重构,提取了CV序列的动力学特征,并将其作为相关向量机(RVM)的训练集,获得了支撑整个退化轨迹的相关向量;最后,利用双指数模型拟合了相关向量,外推趋势至失效门限以计算RUL,并引入了差分整合移动平均自回归模型(ARIMA),对拟合相关向量产生的拟合误差进行了预测,以修正预测的结果。实验结果表明:改进后的退化指标单调性指标提高14.3%;且在不同工况、不同时刻下,经误差修正后的轴承的RUL预测结果较未修正之前有明显提高。研究结果表明:该预测方法可为风电机组齿轮箱重要部件的预测性维护提供参考。 展开更多
关键词 滚动轴承 剩余使用寿命预测 高斯混合模型 杰森-瑞丽散度 误差修正 双指数模型 置信值 差分整合移动平均自回归模型
在线阅读 下载PDF
基于CNN-LSTM-ARIMA的超短期风速预测 被引量:2
17
作者 王世明 张少童 娄嘉奕 《新能源进展》 CSCD 北大核心 2024年第6期688-695,共8页
提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列... 提升风速预测的精准度对于实时调整电力系统的管理策略及增强风电市场的竞争实力有着关键作用。提出一种基于卷积神经网络(CNN)、长短期记忆网络(LSTM)和自回归集成移动平均(ARIMA)模型的超短期风速预测方法,通过CNN卷积层捕捉时间序列数据中的模式和局部特征,利用LSTM模型对提取的特征进行学习训练,基于CNN-LSTM组合架构模型,预测未来风速并对比实际数据获得残差值,最终利用ARIMA分析历史残差来修正未来的预测误差值,实现对风速的超短期预测。以土耳其某个风电场的实际风速记录为基础,对未来10min的风速进行预测。结果表明,与CNN-LSTM、双层LSTM传统神经网络模型相比,CNN-LSTM-ARIMA模型对风速预测结果的平均绝对误差分别下降了16.40%、26.92%,能显著提高预测精度。 展开更多
关键词 风速预测 卷积神经网络 长短期记忆网络 自回归集成移动平均模型
在线阅读 下载PDF
基于ARIMA模型的天津地区单中心HPV感染趋势及基因型特征 被引量:3
18
作者 李杨 谭桂兰 +4 位作者 李怡 谢晓媛 李姝 吴芳 刘霞 《中国感染控制杂志》 CAS CSCD 北大核心 2024年第10期1249-1257,共9页
目的采用自回归移动平均(ARIMA)模型构建时间序列,分析天津地区单中心人乳头瘤病毒(HPV)感染趋势及基因型特征。方法选择2018年1月-2022年12月某院进行HPV检测的7236例女性患者,比较2018-2022年天津地区HPV感染情况及基因型分布。建立AR... 目的采用自回归移动平均(ARIMA)模型构建时间序列,分析天津地区单中心人乳头瘤病毒(HPV)感染趋势及基因型特征。方法选择2018年1月-2022年12月某院进行HPV检测的7236例女性患者,比较2018-2022年天津地区HPV感染情况及基因型分布。建立ARIMA模型时间序列,分析模型拟合。预测2023年HPV感染数,并与实际发生数进行比较,评价模型的预测效果。结果2018-2022年天津地区HPV感染率为14.41%;HPV感染率在31~40岁年龄段最高,感染率为15.47%。阳性标本中HPV单一型别感染比率最高,占比为73.54%(767/1043),以高危型HPV为主。低危型感染占比最高的是HPV-6型,为2.59%,高危型感染占比最高的是HPV-16型,为16.06%。建立ARIMA模型,确定最佳模型为ARIMA(0,1,2)(0,1,1)12,其AIC值和BIC值分别为3.877、4.005,经白噪声检验Ljung-Box Q=8.828差异无统计学意义(P>0.05)。利用模型预测2023年HPV感染数,实际值、预测值的总体趋势基本保持一致,模型RMSE、MAPE、MAE分别为6.289、34.149、4.706,提示模型的预测效果较好。结论天津地区女性人群中,HPV病毒感染类型以单一高危型感染为主,其中HPV-16型感染率最高。天津地区HPV感染存在季节性,ARIMA模型在HPV感染流行趋势的预测中效果较好,适用于短期预测。 展开更多
关键词 自回归移动平均模型 人乳头瘤病毒 基因型分布 感染趋势 HPV
在线阅读 下载PDF
考虑碳市场风险的热电联产虚拟电厂低碳调度 被引量:5
19
作者 王秋杰 亓浩 +4 位作者 谭洪 王昊 朱益 汪平 李振兴 《电力自动化设备》 EI CSCD 北大核心 2024年第10期8-15,共8页
燃煤热电机组“以热定电”的运行模式会导致新能源消纳能力不足,且运行过程中会产生过高碳排放。为此,建立了考虑地源热泵、电转气(P2G)和碳捕集与封存(CCS)的热电联产虚拟电厂模型,并提出了基于碳市场风险的虚拟电厂低碳调度策略。利... 燃煤热电机组“以热定电”的运行模式会导致新能源消纳能力不足,且运行过程中会产生过高碳排放。为此,建立了考虑地源热泵、电转气(P2G)和碳捕集与封存(CCS)的热电联产虚拟电厂模型,并提出了基于碳市场风险的虚拟电厂低碳调度策略。利用自回归滑动平均模型及广义自回归条件异方差模型预测碳市场的次日碳价,并用条件风险价值模型衡量其波动风险;引入电制热设备地源热泵,协同P2G-CCS解耦热电联产“以热定电”运行约束;提出以各设备的运行成本、弃风弃光惩罚成本、碳交易及碳市场风险成本之和最小为目标函数的优化调度策略。算例结果表明:所提调度策略不仅能促进新能源消纳,提高经济效益,还可以降低系统碳排放。 展开更多
关键词 热电联产 虚拟电厂 地源热泵 P2G CCS 自回归滑动平均模型 广义自回归条件异方差模型 条件风险价值
在线阅读 下载PDF
基于误差补偿的多模态协同交通流预测模型 被引量:3
20
作者 吴宇轩 虞慧群 范贵生 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2878-2890,共13页
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio... 交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性. 展开更多
关键词 交通流预测 误差补偿 多模态协同 长短期记忆神经网络 差分整合移动平均自回归模型
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部