期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于FARIMA模型的流量抽样测量方法 被引量:6
1
作者 潘乔 罗辛 +1 位作者 王高丽 裴昌幸 《计算机工程》 CAS CSCD 北大核心 2010年第15期7-8,11,共3页
目前的流量抽样测量方法主要基于传统的数学理论,并没有考虑到实际网络流量的特征,基于此,提出基于FARIMA流量预测的抽样方法,根据流量预测值动态调整抽样率,既减轻了CPU的负载,又节省了存储空间。通过对比实际使用中的流量抽样测量方... 目前的流量抽样测量方法主要基于传统的数学理论,并没有考虑到实际网络流量的特征,基于此,提出基于FARIMA流量预测的抽样方法,根据流量预测值动态调整抽样率,既减轻了CPU的负载,又节省了存储空间。通过对比实际使用中的流量抽样测量方法取得的数据报文样本均值和Hurst参数,表明该方法能够正确体现原始数据的流量行为统计特征。 展开更多
关键词 网络测量 流量抽样 自回归分数整合滑动平均模型 流量预测
在线阅读 下载PDF
基于FARIMA模型的Internet时延预测 被引量:23
2
作者 宋杨 涂小敏 费敏锐 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第4期757-763,共7页
针对Internet时延具有自相似性这一特点,采用自回归分数滑动平均模型(fractal autoregressive integrated moving aver-age,FARIMA)对Internet时延建模,提出了基于概率上限的Internet时延预报方法,即保证实际时延按一定概率在预测时延... 针对Internet时延具有自相似性这一特点,采用自回归分数滑动平均模型(fractal autoregressive integrated moving aver-age,FARIMA)对Internet时延建模,提出了基于概率上限的Internet时延预报方法,即保证实际时延按一定概率在预测时延范围之内。通过对实测时延数据进行预测对比,结果表明基于FARIMA模型的预测效果要优于基于ARMA(auto regnessive and mov-ing average)模型的预测效果。 展开更多
关键词 自相似性 Internet时延 farima模型
在线阅读 下载PDF
基于FARIMA的网络建模与性能分析 被引量:5
3
作者 胡玉清 谭献海 宋正阳 《计算机工程与设计》 CSCD 北大核心 2008年第18期4666-4668,4714,共4页
给出了利用FARIMA模型进行建模、拟合实际网络流量的方法和参数估计的具体步骤,研究了长短相关对网络性能的影响。研究结果表明,不论长相关还是短相关,FARIMA模型对实际业务拟合二者都非常接近,当缓存较小时,网络性能将由短相关特性支配... 给出了利用FARIMA模型进行建模、拟合实际网络流量的方法和参数估计的具体步骤,研究了长短相关对网络性能的影响。研究结果表明,不论长相关还是短相关,FARIMA模型对实际业务拟合二者都非常接近,当缓存较小时,网络性能将由短相关特性支配,而且随着缓存增加,长相关业务下系统性能的衰减要比短相关业务下衰减的慢,这些发现对今后网络设计性能研究具有重要的参考价值。 展开更多
关键词 网络业务建模 长相关 自相似 farima 网络性能
在线阅读 下载PDF
基于FARIMA模型的网络排队性能分析 被引量:2
4
作者 饶云华 曹阳 +1 位作者 杨艳 王习稳 《计算机工程》 EI CAS CSCD 北大核心 2006年第23期13-14,20,共3页
利用能够同时反映通信量长程和短程相关性的FARIMA模型,研究了长程相关和短程相关对于FIFO排队系统性能的影响,讨论了在给定系统缓存溢出概率条件下,FARIMA模型为输入时,排队队长分布的渐近解析表达式。研究表明,短程相关性在缓存较小时... 利用能够同时反映通信量长程和短程相关性的FARIMA模型,研究了长程相关和短程相关对于FIFO排队系统性能的影响,讨论了在给定系统缓存溢出概率条件下,FARIMA模型为输入时,排队队长分布的渐近解析表达式。研究表明,短程相关性在缓存较小时,对系统队长分布会有影响,但是在自相似存在的情况下,系统的排队长度分布为渐近Weibull分布,与通信量的短程相关性无关。蒙特卡罗仿真分析表明了结果的正确性和有效性。 展开更多
关键词 队长分布 溢出概率 farima 长程相关
在线阅读 下载PDF
基于FARIMA模型的智能变电站通信流量异常分析 被引量:38
5
作者 郝唯杰 杨强 李炜 《电力系统自动化》 EI CSCD 北大核心 2019年第1期158-167,共10页
随着输变电设备自动化、变电站智能化建设的快速发展,电网信息安全隐患日益凸显。精确可靠的变电站通信网络流量模型建模和异常检测方法已成为预防网络安全问题和识别网络攻击的重要手段。文中在对变电站站控层网络流量行为特性进行分... 随着输变电设备自动化、变电站智能化建设的快速发展,电网信息安全隐患日益凸显。精确可靠的变电站通信网络流量模型建模和异常检测方法已成为预防网络安全问题和识别网络攻击的重要手段。文中在对变电站站控层网络流量行为特性进行分析的基础上,采用分形自回归积分滑动平均(FARIMA)模型对网络流量构建了阈值模型。针对变电站典型的网络攻击模式和流量异常特征,基于运行状态评估算法对某实际变电站站控层流量数据进行分析,并计算典型网络异常概率,从而实现了变电站在网络攻击情形下的安全态势评价。 展开更多
关键词 IEC 61850 分形自回归积分滑动平均模型 智能变电站 通信流量 回归模型
在线阅读 下载PDF
基于水电储能调节的风光水发电联合优化调度策略 被引量:17
6
作者 何奇 张宇 +4 位作者 邓玲 王海亮 谢琼瑶 王春 胡家旗 《广东电力》 北大核心 2024年第3期12-24,共13页
为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;... 为缓解新能源装机容量扩大引起的弃风弃光现象,在已有梯级水电上下电站之间加入储能泵站,提出风光水储短期优化调度策略。构建以风光水储系统负荷跟踪误差最小、梯级水电站发电量最大和梯级水电站发电耗水量最小的多目标优化调度模型;提出基于季节性自回归移动平均(seasonal auto-regressive lntegrated moving average, SARIMA)模型和Copula函数的风光出力预测模型作为优化调度模型的边界条件,通过SARIMA预测模型将风光出力历史数据分解为季节性分量、趋势分量以及随机噪声余项进行全天96个调度时段风光出力预测,并叠加上基于Copula函数生成风光出力预测误差,然后通过拉丁超立方采样以及K-means聚类进行场景生成和缩减得到5个风光出力场景。选取风光典型日出力数据为例进行算例分析,算例结果表明:所提预测模型较SARIMA模型可以显著提高预测准确度,模型预测风光出力均方根误差从33.34、229.49 MW分别下降至0.697、9.534 MW;所提优化调度策略可以在全年丰、平、枯水期有效减少弃风弃光现象,并可将过剩新能源中的50%转化为上级水库储存水能。 展开更多
关键词 风光出力预测 季节性自回归移动平均模型 COPULA函数 风光水储系统 负荷跟踪
在线阅读 下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估 被引量:4
7
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和SVR) 组合模型 协方差优选法
在线阅读 下载PDF
GM(1,1)灰色模型和ARIMA模型在HFRS发病率预测中的比较研究 被引量:35
8
作者 吴伟 关鹏 +1 位作者 郭军巧 周宝森 《中国医科大学学报》 CAS CSCD 北大核心 2008年第1期52-55,共4页
目的对GM(1,1)模型和ARIMA模型在肾综合征出血热(HFRS)发病率预测中的效果进行比较。方法利用1990-2001年辽宁省、丹东市和沈阳市HFRS的发病率分别建立GM(1,1)灰色预测模型和ARIMA模型,对建立的模型进行拟合。同时,对2002年3个地区的HFR... 目的对GM(1,1)模型和ARIMA模型在肾综合征出血热(HFRS)发病率预测中的效果进行比较。方法利用1990-2001年辽宁省、丹东市和沈阳市HFRS的发病率分别建立GM(1,1)灰色预测模型和ARIMA模型,对建立的模型进行拟合。同时,对2002年3个地区的HFRS发病率进行预测,比较2个模型的拟合和预测效果。结果针对辽宁省HFRS发病率建立的GM(1,1)模型和ARIMA模型的平均误差率(MER)分别为13.5143%、25.0814%;决定系数(R2)分别为0.8961、0.6997。针对丹东市HFRS发病率建立模型的MER分别为19.7329%、20.6275%;R2分别为0.8112、0.7628。针对沈阳市HFRS发病率建立模型的MER分别为15.1421%、18.0584%;R2分别为0.8757、0.7889。结论GM(1,1)模型对于小样本以及隐含指数函数变化趋势的资料具有明显的预测优势,预测效果优于ARIMA模型,对解决时间序列类型的HFRS发病率等资料有很好的实用价值。 展开更多
关键词 肾综合征出血热 GM(1 1)模型 ARIMA模型 预测
在线阅读 下载PDF
ARIMA模型在流行性感冒预测中的应用 被引量:44
9
作者 漆莉 李革 李勤 《第三军医大学学报》 CAS CSCD 北大核心 2007年第3期267-269,共3页
目的探讨ARIMA模型在流感预测方面的应用,建立流感发病预测模型,并证明模型的适用性。方法利用重庆市2002年1月-2006年6月流感发病数资料,通过SPSS拟合ARIMA模型,用Q统计量法对模型适应性进行检验。结果建立ARIMA(1,1,1)模型,模型Q统计... 目的探讨ARIMA模型在流感预测方面的应用,建立流感发病预测模型,并证明模型的适用性。方法利用重庆市2002年1月-2006年6月流感发病数资料,通过SPSS拟合ARIMA模型,用Q统计量法对模型适应性进行检验。结果建立ARIMA(1,1,1)模型,模型Q统计量<χα2(m),P>0.05,证实了该模型的适用性。结论ARIMA模型可用于流感发病的动态分析和短期预测。 展开更多
关键词 ARIMA模型 时间序列 流行性感冒 预测
在线阅读 下载PDF
ARIMA乘积季节模型在细菌性痢疾月发病率预测中的应用 被引量:20
10
作者 朋文佳 朱玉 +1 位作者 何倩 王静 《中国卫生统计》 CSCD 北大核心 2011年第6期645-647,共3页
目的探讨ARIMA乘积季节性模型在细菌性痢疾月发病率研究中的应用,并预测细菌性痢疾的月发病趋势。方法对某区2004~2008年细菌性痢疾月发病率资料建立ARIMA乘积季节性模型,利用2009年细菌性痢疾月发病率资料对模型参数进行修正,并预测2... 目的探讨ARIMA乘积季节性模型在细菌性痢疾月发病率研究中的应用,并预测细菌性痢疾的月发病趋势。方法对某区2004~2008年细菌性痢疾月发病率资料建立ARIMA乘积季节性模型,利用2009年细菌性痢疾月发病率资料对模型参数进行修正,并预测2010年细菌性痢疾月发病率。结果构建ARIMA(1,0,0)×(1,1,0)12模型,模型决定系数(R2)为0.96。结论 ARIMA(1,0,0)×(1,1,0)模型可以用于某区细菌性痢疾月发病率的拟合与预测。 展开更多
关键词 细菌性痢疾 发病率 ARIMA模型 预测
在线阅读 下载PDF
高超声速飞行器分解集成轨迹预测算法 被引量:25
11
作者 韩春耀 熊家军 +1 位作者 张凯 兰旭辉 《系统工程与电子技术》 EI CSCD 北大核心 2018年第1期151-158,共8页
针对无动力滑翔高超声速飞行器的轨迹预测问题,提出了分解集成轨迹预测模型。依据运动轨迹的周期跳跃特性,运用先集成再分解的轨迹预测思路,首先将运动轨迹序列分解为具有趋势性、周期性和随机性特征的子序列,再针对每项子序列的特征采... 针对无动力滑翔高超声速飞行器的轨迹预测问题,提出了分解集成轨迹预测模型。依据运动轨迹的周期跳跃特性,运用先集成再分解的轨迹预测思路,首先将运动轨迹序列分解为具有趋势性、周期性和随机性特征的子序列,再针对每项子序列的特征采用相应的子轨迹预测模型,最后将各子轨迹预测模型预测结果的集成作为最终预测值。由于子序列与子轨迹预测模型具有更高的契合度,使得分解集成轨迹预测算法相对于使用单一模型的轨迹预测算法更具优势。仿真实验表明,分解集成轨迹预测算法显著提高了轨迹预测精度。 展开更多
关键词 轨迹预测 无动力滑翔高超声速飞行器 分解集成模型 最小二乘支持向量回归模型 自回归积分滑动平均模型
在线阅读 下载PDF
基于累积式自回归动平均传递函数模型的短期负荷预测 被引量:19
12
作者 李妮 江岳春 +1 位作者 黄珊 毛李帆 《电网技术》 EI CSCD 北大核心 2009年第8期93-97,103,共6页
针对短期负荷预测,提出了累积式自回归动平均(auto-regressive integrated moving average,ARIMA)传递函数模型的简化建模方法。传递函数模型考虑了干扰因素对因变量的作用,体现了干扰因素中变量间相互影响的关系。其构造灵活,可用较少... 针对短期负荷预测,提出了累积式自回归动平均(auto-regressive integrated moving average,ARIMA)传递函数模型的简化建模方法。传递函数模型考虑了干扰因素对因变量的作用,体现了干扰因素中变量间相互影响的关系。其构造灵活,可用较少的参数建立阶数较高的模型;并且假定值较少,容易得到满足。该文还将温度因素考虑在内,通过算例将传递函数模型和ARIMA模型的预测结果与实际值进行了比较,结果表明采用传递函数改进后的ARIMA模型预测精度提高,预测误差减小,具有较强的实用性。 展开更多
关键词 负荷预测 时间序列 累积式自回归动平均模型 传递函数模型
在线阅读 下载PDF
基于改进灰色ARMA模型的卫星钟差短期预报研究 被引量:19
13
作者 李晓宇 杨洋 +1 位作者 胡晓粉 贾蕊溪 《大地测量与地球动力学》 CSCD 北大核心 2013年第1期59-63,共5页
导航卫星钟差的精度直接影响导航定位性能。针对卫星钟差由趋势项和随机项组成的特点,提出一种改进灰色模型和ARMA模型的钟差预报组合模型。对传统灰色模型进行改进并建立趋势项预报模型,提取钟差随机项建立ARMA模型,最后将预报结果相... 导航卫星钟差的精度直接影响导航定位性能。针对卫星钟差由趋势项和随机项组成的特点,提出一种改进灰色模型和ARMA模型的钟差预报组合模型。对传统灰色模型进行改进并建立趋势项预报模型,提取钟差随机项建立ARMA模型,最后将预报结果相加。在算例中采用IGS提供的精密钟差进行预报,仿真结果表明钟差精度较高。 展开更多
关键词 钟差预报 改进灰色模型 ARMA 组合模型 钟差精度
在线阅读 下载PDF
基于ARIMA模型的航空装备事故时序预测 被引量:17
14
作者 甘旭升 端木京顺 +1 位作者 高建国 赵录峰 《中国安全科学学报》 CAS CSCD 北大核心 2012年第3期97-102,共6页
为提高航空装备事故预防的针对性、有效性和主动性,预防和减少事故的发生,降低事故造成的损失,提出一种时序的差分自回归滑动平均(ARIMA)模型。其建模过程先在时间序列基础上辨识一个试用模型,然后加以诊断,并作出必要调整,反复进行辨... 为提高航空装备事故预防的针对性、有效性和主动性,预防和减少事故的发生,降低事故造成的损失,提出一种时序的差分自回归滑动平均(ARIMA)模型。其建模过程先在时间序列基础上辨识一个试用模型,然后加以诊断,并作出必要调整,反复进行辨识、估计、诊断,直至获得较为满意的ARIMA预测模型。在实例验证中,所构建的用来预测美国空军飞行事故万时率的ARIMA模型,能够将预测的平均相对误差控制在7%以内,预测结果总体反映航空装备的实际安全状况。 展开更多
关键词 航空装备事故 时间序列 差分自回归滑动平均(ARIMA)模型 飞行事故万时率 单位根检验
在线阅读 下载PDF
基于非参数GARCH的时间序列模型在日前电价预测中的应用 被引量:17
15
作者 邓佳佳 黄元生 宋高峰 《电网技术》 EI CSCD 北大核心 2012年第4期190-196,共7页
电力市场中电价序列具有较强的波动性、周期性和随机性,以致经常出现价格尖峰,这在很大程度上影响了电价预测的精度。提出了一种基于小波变换和非参数GARCH(generalized auto regressive conditional heteroskedasticity)模型的时间序... 电力市场中电价序列具有较强的波动性、周期性和随机性,以致经常出现价格尖峰,这在很大程度上影响了电价预测的精度。提出了一种基于小波变换和非参数GARCH(generalized auto regressive conditional heteroskedasticity)模型的时间序列模型对日前电价进行预测。利用小波变换将历史电价序列分解重构概貌序列和细节序列,分别建立累积式自回归滑动平均(auto-regressive integrated moving average,ARIMA)模型进行预测,采用非参数GARCH模型对电价序列预测残差的随机波动率进行建模,从而提高对价格波动性的预测能力和ARIMA模型的预测精度。将该模型应用于美国宾夕法尼亚—新泽西—马里兰(Pennsylvania-New Jersey-Maryland,PJM)电力市场的日前电价预测。算例结果表明,非参数GARCH模型可以更好地拟合电价序列剧烈波动的特性,该模型能够提高电价的预测精度。 展开更多
关键词 电价预测 小波变换 累积式自回归滑动平均模型 非参数GARCH模型
在线阅读 下载PDF
时间序列分解法在北京市朝阳区细菌性痢疾周报告发病率预测中的应用 被引量:19
16
作者 崔树峰 马建新 李书明 《中国卫生统计》 CSCD 北大核心 2009年第6期583-585,591,共4页
目的使用时间序列分解法建立数学模型对北京市朝阳区细菌性痢疾报告发病率按"周"进行预测,并评价模型的预测效果。方法首先使用时间序列分解法剔除时间序列的季节变动因素(St),然后对剔除季节因素后的时间序列通过模型识别、... 目的使用时间序列分解法建立数学模型对北京市朝阳区细菌性痢疾报告发病率按"周"进行预测,并评价模型的预测效果。方法首先使用时间序列分解法剔除时间序列的季节变动因素(St),然后对剔除季节因素后的时间序列通过模型识别、参数估计及检验、白噪声检验等过程,建立求和自回归移动平均模型(ARIMA),最后将St和ARIMA相乘得到预测模型。结果对朝阳区2008年细菌性痢疾报告发病率建立预测模型为St×ARIMA(2,1,3),预测的平均误差为-0.06,平均相对误差为2.32%。结论时间序列分解法可以利用按"周"统计的数据进行预测,缩短了预测周期,并具有较高的短期预测精度。 展开更多
关键词 细菌性痢疾 时间序列 求和自回归移动平均模型 预测
在线阅读 下载PDF
基于ARIMA的输电线路容量分析及预测 被引量:4
17
作者 朱文俊 任丽佳 +2 位作者 盛戈皞 江秀臣 胡玉峰 《电力系统及其自动化学报》 CSCD 北大核心 2010年第3期108-112,共5页
在动态提高输电线路输送容量系统中,线路可传输容量进行短期的预测对制定电力系统调度计划有重要意义。为此,对线路容量时间序列进行分析,利用自相关函数ACF方法验证了线路容量为非平稳时间序列。采用ARIMA(auto-regressive integrated ... 在动态提高输电线路输送容量系统中,线路可传输容量进行短期的预测对制定电力系统调度计划有重要意义。为此,对线路容量时间序列进行分析,利用自相关函数ACF方法验证了线路容量为非平稳时间序列。采用ARIMA(auto-regressive integrated moving average)建模方法对输电线路容量数据先差分平稳化预处理,然后选择AIC准则进行模型识别和参数估计,最后应用ARIMA模型做出短期容量预测。实际系统中应用证明了该方法的适用性和准确性。 展开更多
关键词 动态提高输电容量 输电线路 非平稳时间序列 容量预测 自回归滑动平均模型
在线阅读 下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
18
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分自回归移动平均模型(ARIMA模型) 自回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
在线阅读 下载PDF
基于ARIMA-GM组合模型的湖北省电力需求预测研究 被引量:8
19
作者 王莉琳 张维 +3 位作者 赖敏 向铁元 杨再鹤 周波 《中国农村水利水电》 北大核心 2013年第4期101-105,共5页
通过分析湖北省历年电力消费量,利用灰色模型(GM)和自回归积分移动平均(ARIMA)模型分别对2012-2020期间的湖北省电力需求量进行了预测,然后通过方差倒数法进行组合预测,得到了精度更高的预测结果。通过分析整个预测过程及结果,该方法易... 通过分析湖北省历年电力消费量,利用灰色模型(GM)和自回归积分移动平均(ARIMA)模型分别对2012-2020期间的湖北省电力需求量进行了预测,然后通过方差倒数法进行组合预测,得到了精度更高的预测结果。通过分析整个预测过程及结果,该方法易于操作,精度较高,是一种对电力需求预测方法有益的探索。 展开更多
关键词 时间序列 灰色模型 自回归积分移动平均模型 方差倒数法
在线阅读 下载PDF
基于ARIMA-RNN组合模型的云服务器老化预测方法 被引量:16
20
作者 孟海宁 童新宇 +3 位作者 石月开 朱磊 冯锴 黑新宏 《通信学报》 EI CSCD 北大核心 2021年第1期163-171,共9页
针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法... 针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法。首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法计算时间序列数据的相关性,确定RNN模型的输入维度;最后,将ARIMA模型预测值和历史数据作为RNN模型的输入进行二次老化预测,从而克服了ARIMA模型对波动较大的时间序列数据预测精度较低的局限性。实验结果表明,ARIMA-RNN组合模型比ARIMA模型及RNN模型的预测精度高,且比RNN模型预测收敛速度快。 展开更多
关键词 软件老化 云服务器 预测方法 ARIMA模型 RNN模型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部