期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model 被引量:5
1
作者 戴前伟 冯德山 何继善 《Journal of Central South University of Technology》 EI 2005年第4期478-482,共5页
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c... The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model. 展开更多
关键词 ground penetrating radar finite difference time domain method forward simulation ideal frequency dispersion relationship
在线阅读 下载PDF
An element-free Galerkin method for ground penetrating radar numerical simulation 被引量:2
2
作者 冯德山 郭荣文 王洪华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期261-269,共9页
An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different fr... An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision. 展开更多
关键词 element-free Galerkin method moving least-squares method ground penetrating radar forward simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部