Age is one of the factors which influnce foreign language learning, but not the most important one. Comparision on the effect of foreign language learning between adults and children cannot rely merely on age. So the ...Age is one of the factors which influnce foreign language learning, but not the most important one. Comparision on the effect of foreign language learning between adults and children cannot rely merely on age. So the question of an optimum age for foreign language learning is not a simple one which is only related to age. There are different optimum ages for different aims and demands of learning foreign language.展开更多
There are hot arguments on foreign language learning "the sooner the better" and it is critical to children' s foreign language education policies.This study combs series of empirical studies and models ...There are hot arguments on foreign language learning "the sooner the better" and it is critical to children' s foreign language education policies.This study combs series of empirical studies and models to analyze disadvantages of the belief of foreign language education "the sooner the better" in China.The findings are:1.Age is not the key factor to foreign language achievement,learning strategies,language distance and mother language proficiency are important factors that can not be ignored;2.The results in external foreign language studies can not be used directly to guide domestic foreign language education policies,for practical demands must be taken in consideration.展开更多
深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言...深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。展开更多
随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,...随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,开发了基于大语言模型的企业碳排放分析与知识问答系统。提出了一种多样化索引模块构建方法,构建高质量的知识与法规检索数据集。针对碳排放报告(政策)领域的知识问答任务,提出了自提示检索增强生成架构,集成意图识别、改进的结构化思维链、混合检索技术、高质量提示工程和Text2SQL系统,支持多维度分析企业可持续性报告,为企业碳排放报告(政策)提供了一种高效、精准的知识问答解决方案。通过多层分块机制、文档索引和幻觉识别功能,确保结果的准确性与可验证性,降低了LLM技术在系统中的幻觉率。通过对比实验,所提算法在各模块的协同下在检索增强生成实验中各指标表现优异,对于企业碳排放报告的关键信息抽取和报告评价,尤其是长文本处理具有明显的优势。展开更多
构建数字孪生水利建设知识图谱挖掘水利建设对象之间的潜在关系能够帮助相关人员优化水利建设设计方案和决策。针对数字孪生水利建设的学科交叉和知识结构复杂的特性,以及通用知识抽取模型缺乏对水利领域知识的学习和知识抽取精度不足...构建数字孪生水利建设知识图谱挖掘水利建设对象之间的潜在关系能够帮助相关人员优化水利建设设计方案和决策。针对数字孪生水利建设的学科交叉和知识结构复杂的特性,以及通用知识抽取模型缺乏对水利领域知识的学习和知识抽取精度不足等问题,为提高知识抽取的精度,提出一种基于大语言模型的数字孪生水利建设知识抽取方法(DTKE-LLM)。该方法通过LangChain部署本地大语言模型(LLM)并集成数字孪生水利领域知识,基于提示学习微调LLM,LLM利用语义理解和生成能力抽取知识,同时,设计异源实体对齐策略优化实体抽取结果。在水利领域语料库上进行对比实验和消融实验,以验证所提方法的有效性。对比实验结果表明,相较于基于深度学习的双向长短期记忆条件随机场(BiLSTM-CRF)命名实体识别模型和通用信息抽取模型UIE(Universal Information Extraction),DTKE-LLM的精确率更优;消融实验结果表明,相较于ChatGLM2-6B(Chat Generative Language Model 2.6 Billion),DTKE-LLM的实体抽取和关系抽取F1值分别提高了5.5和3.2个百分点。可见,该方法在保障知识图谱构建质量的基础上,实现了数字孪生水利建设知识图谱的构建。展开更多
文摘Age is one of the factors which influnce foreign language learning, but not the most important one. Comparision on the effect of foreign language learning between adults and children cannot rely merely on age. So the question of an optimum age for foreign language learning is not a simple one which is only related to age. There are different optimum ages for different aims and demands of learning foreign language.
基金the staged achievement of the national social science fund project--the Empirical Studies of Whether Foreign Language Learning is the Earlier the Better(CHA140176)
文摘There are hot arguments on foreign language learning "the sooner the better" and it is critical to children' s foreign language education policies.This study combs series of empirical studies and models to analyze disadvantages of the belief of foreign language education "the sooner the better" in China.The findings are:1.Age is not the key factor to foreign language achievement,learning strategies,language distance and mother language proficiency are important factors that can not be ignored;2.The results in external foreign language studies can not be used directly to guide domestic foreign language education policies,for practical demands must be taken in consideration.
文摘深度学习是人工智能领域的热门研究方向之一,它通过构建多层人工神经网络模仿人脑对数据的处理机制。大型语言模型(large language model,LLM)基于深度学习的架构,在无需编程指令的情况下,能通过分析大量数据以获得理解和生成人类语言的能力,被广泛应用于自然语言处理、计算机视觉、智慧医疗、智慧交通等诸多领域。文章总结了LLM在医疗领域的应用,涵盖了LLM针对医疗任务的基本训练流程、特殊策略以及在具体医疗场景中的应用。同时,进一步讨论了LLM在应用中面临的挑战,包括决策过程缺乏透明度、输出准确性以及隐私、伦理问题等,随后列举了相应的改进策略。最后,文章展望了LLM在医疗领域的未来发展趋势,及其对人类健康事业发展的潜在影响。
文摘随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,开发了基于大语言模型的企业碳排放分析与知识问答系统。提出了一种多样化索引模块构建方法,构建高质量的知识与法规检索数据集。针对碳排放报告(政策)领域的知识问答任务,提出了自提示检索增强生成架构,集成意图识别、改进的结构化思维链、混合检索技术、高质量提示工程和Text2SQL系统,支持多维度分析企业可持续性报告,为企业碳排放报告(政策)提供了一种高效、精准的知识问答解决方案。通过多层分块机制、文档索引和幻觉识别功能,确保结果的准确性与可验证性,降低了LLM技术在系统中的幻觉率。通过对比实验,所提算法在各模块的协同下在检索增强生成实验中各指标表现优异,对于企业碳排放报告的关键信息抽取和报告评价,尤其是长文本处理具有明显的优势。
文摘构建数字孪生水利建设知识图谱挖掘水利建设对象之间的潜在关系能够帮助相关人员优化水利建设设计方案和决策。针对数字孪生水利建设的学科交叉和知识结构复杂的特性,以及通用知识抽取模型缺乏对水利领域知识的学习和知识抽取精度不足等问题,为提高知识抽取的精度,提出一种基于大语言模型的数字孪生水利建设知识抽取方法(DTKE-LLM)。该方法通过LangChain部署本地大语言模型(LLM)并集成数字孪生水利领域知识,基于提示学习微调LLM,LLM利用语义理解和生成能力抽取知识,同时,设计异源实体对齐策略优化实体抽取结果。在水利领域语料库上进行对比实验和消融实验,以验证所提方法的有效性。对比实验结果表明,相较于基于深度学习的双向长短期记忆条件随机场(BiLSTM-CRF)命名实体识别模型和通用信息抽取模型UIE(Universal Information Extraction),DTKE-LLM的精确率更优;消融实验结果表明,相较于ChatGLM2-6B(Chat Generative Language Model 2.6 Billion),DTKE-LLM的实体抽取和关系抽取F1值分别提高了5.5和3.2个百分点。可见,该方法在保障知识图谱构建质量的基础上,实现了数字孪生水利建设知识图谱的构建。