期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Improved hybrid position/force controller design of a flexible robot manipulator using a sliding observer 被引量:4
1
作者 Farooq M Wang Daobo Dar N. U 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期146-158,共13页
An improved hybrid position/force controller design of a flexible robot manipulator is presented using a sliding observer. The friction between the end effector and the environment is considered and compensated. For s... An improved hybrid position/force controller design of a flexible robot manipulator is presented using a sliding observer. The friction between the end effector and the environment is considered and compensated. For systematic reasons the controller is designed taking into consideration the rigid link subsystems and the flexible joints. The proposed control system satisfies the stability of the two subsystems and copes with the uncertainty of robot dynamics. A sliding observer is designed to estimate the time derivative of the torque applied as input to the rigid part of the robot. For the stability of the observer, it is assumed that the uncertainty of the observed system is bounded. A MRAC algorithm is used for the estimation of the friction forces at the contact point between the end effector and the environment. Finally simulation and experimental results are given, to demonstrate the effectiveness of the proposed controller. 展开更多
关键词 force control sliding control Lyapunov stability robot end effector friction force.
在线阅读 下载PDF
A novel grasping force control strategy for multi-fingered prosthetic hand 被引量:4
2
作者 张庭 姜力 刘宏 《Journal of Central South University》 SCIE EI CAS 2012年第6期1537-1542,共6页
A grasping force control strategy is proposed in order to complete various free manipulations by using anthropomorphic prosthetic hand. The position-based impedance control and force-tracking impedance control are use... A grasping force control strategy is proposed in order to complete various free manipulations by using anthropomorphic prosthetic hand. The position-based impedance control and force-tracking impedance control are used in free and constraint spaces, respectively. The fuzzy observer is adopted in transition in order to switch control mode. Two control modes use one position-based impedance controller. In order to achieve grasping force track, reference force is added to the impedance controller in the constraint space. Trajectory tracking in free space and torque tracking in constrained space are realized, and reliability of mode switch and stability of system are achieved. An adaptive sliding mode friction compensation method is proposed. This method makes use of terminal sliding mode idea to design sliding mode function, which makes the tracking error converge to zero in finite time and avoids the problem of conventional sliding surface that tracking error cannot converge to zero. Based on the characteristic of the exponential form friction, the sliding mode control law including the estimation of friction parameter is obtained through terminal sliding mode idea, and the online parameter update laws are obtained based on Lyapunov stability theorem. The experiments on the HIT Prosthetic Hand IV are carried out to evaluate the grasping force control strategy, and the experiment results verify the effectiveness of this control strategy. 展开更多
关键词 GRASPING impedance control force control sliding mode control prosthetic hand
在线阅读 下载PDF
Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators 被引量:2
3
作者 李元春 丁贵彬 赵博 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2917-2925,共9页
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper... A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme. 展开更多
关键词 constrained reconfigurable manipulators position/force control model decomposition decentralized control neural network
在线阅读 下载PDF
Hybrid force control of astronaut rehabilitative training robot under active loading mode 被引量:3
4
作者 邹宇鹏 张立勋 +1 位作者 马慧子 秦涛 《Journal of Central South University》 SCIE EI CAS 2014年第11期4121-4132,共12页
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ... In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements. 展开更多
关键词 space adaptation syndrome astronaut rehabilitative training robot model identification hybrid force control
在线阅读 下载PDF
Cutting Characteristics of Force Controllable Milling Head
5
作者 Shirakashi Takahiro Shibuya Wataru 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期108-,共1页
In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction re... In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cutting force and its locus can be also changed by the selection of the ratio of up/down cutting depth. For practical usage of the head the analytical prediction method of the cutting forc e characteristics under selected cutting condition was proposed based on the ene rgy approach method proposed, in which both of cutting force characteristics of a single milling cutter and the combined milling cutter under a selected up/dow n cutting depth ratio were analytically estimated based on the two dimensional c utting data. It was experimentally shown that in NC milling machine the cutting force locus was controlled in pre-determined direction under various tool paths . 展开更多
关键词 Cutting Characteristics of force controllable Milling Head
在线阅读 下载PDF
Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness 被引量:4
6
作者 孟德远 陶国良 +1 位作者 班伟 钱鹏飞 《Journal of Central South University》 SCIE EI CAS 2013年第6期1510-1518,共9页
The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the... The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum. 展开更多
关键词 servo-pneumatic systems output force control cylinder output stiffness sliding mode control adaptive control
在线阅读 下载PDF
Compliant landing of a trotting quadruped robot based on hybrid motion/force robust control 被引量:2
7
作者 郎琳 王剑 +1 位作者 韦庆 马宏绪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1970-1980,共11页
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi... A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods. 展开更多
关键词 trotting quadruped robots compliant landing joint torque optimization quadratic programming(QP) hybrid motion/force robust control
在线阅读 下载PDF
Finite-time tracking control and vibration suppression based on the concept of virtual control force for flexible two-link space robot 被引量:1
8
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期874-883,共10页
The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange met... The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange method with assumed mode method. In order to ensure that the base attitude and the joints of space robot can reach the desired positions within a limited time, a non-singular fast terminal sliding mode(NFTSM) controller is designed, which realizes the finite-time convergence of the trajectory tracking errors. Subsequently, for the sake of suppressing the vibrations of flexible links, a hybrid trajectory based on the concept of the virtual control force is developed, which can reflect the flexible modes and the trajectory tracking errors simultaneously. By modifying the original control scheme, a NFTSM hybrid controller is proposed. The hybrid control scheme can not only realized attitude stabilization and trajectory tracking of joints in finite time, but also provide a new method of vibration suppression. The simulation results verify the effectiveness of the designed hybrid control strategy. 展开更多
关键词 FINITE-TIME Terminal sliding mode Flexible links Vibration suppression Virtual control force
在线阅读 下载PDF
Leg compliance control of a hexapod robot based on improved adaptive control in different environments 被引量:3
9
作者 朱雅光 金波 李伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期904-913,共10页
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance c... Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot. 展开更多
关键词 hexapod robot tip-point force adaptive control fuzzy control adaptability
在线阅读 下载PDF
Study on the Robot Robust Adaptive Control Based on Neural Networks
10
作者 温淑焕 王洪瑞 吴丽艳 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期55-58,共4页
Force control based on neural networks is presented. Under the framework of hybrid control, an RBF neural network is used to compensate for all the uncertainties from robot dynamics and unknown environment first. The ... Force control based on neural networks is presented. Under the framework of hybrid control, an RBF neural network is used to compensate for all the uncertainties from robot dynamics and unknown environment first. The technique will improve the adaptability to environment stiffness when the end-effector is in contact with the environment, and does not require any a priori knowledge on the upper bound of syste uncertainties. Moreover, it need not compute the inverse of inertia matrix. Learning algorithms for neural networks to minimize the force error directly are designed. Simulation results have shown a better force/position tracking when neural network is used. 展开更多
关键词 ROBOTICS force/position control neural network hybrid control.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部