The exhaust volute is a device that can change the exhaust direction of the ship’s gas turbine to reduce the flow loss of the high-temperature and high-speed turbine exhaust gas in the box-type exhaust volute,thereby...The exhaust volute is a device that can change the exhaust direction of the ship’s gas turbine to reduce the flow loss of the high-temperature and high-speed turbine exhaust gas in the box-type exhaust volute,thereby improving its power output performance.This paper first investigates the internal flow field characteristics of the exhaust volute via numerical simulation and reveals the main source of the internal resistance loss of the volute.On the premise of not affecting the installation size of the volute and matching it with other components in the cabin,the design scheme of volute bottom shunt and volute chamfer are then optimized in accordance with the flow characteristics inside the volute.Numerical simulation results show that the partial flow structure at the bottom of the volute can effectively improve the low-velocity region and the vortex flow at the bottom of the volute,and the chamfered angle scheme can control the regular expansion and compression of the airflow.When the volute adopts the appropriate chamfer angle and the bottom split-flow structure,the total pressure loss can be reduced by 19.6%,and the static pressure recovery coefficient can be increased by 42.05%.展开更多
Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the...Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency.展开更多
Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleto...Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleton of the GAHM for low mass loss and resources.Smooth eulerian level set values are calculated from the FTM interface,and are used for a local interface reconstruction.The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change.The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell.The performance of the GAHM is carefully evaluated in a benchmark test.Results show significant improvements of mass loss,clear subgrid structures,highly accurate derivatives(normals and curvatures) and low cost.The GAHM is further coupled with an incompressible multiphase flow solver,Super CE/SE,for more complex and practical applications.The updated solver is evaluated through comparison with an early droplet research.展开更多
基金Supported by the National Science and Technology Major Project(No.J2019-Ⅲ-0017).
文摘The exhaust volute is a device that can change the exhaust direction of the ship’s gas turbine to reduce the flow loss of the high-temperature and high-speed turbine exhaust gas in the box-type exhaust volute,thereby improving its power output performance.This paper first investigates the internal flow field characteristics of the exhaust volute via numerical simulation and reveals the main source of the internal resistance loss of the volute.On the premise of not affecting the installation size of the volute and matching it with other components in the cabin,the design scheme of volute bottom shunt and volute chamfer are then optimized in accordance with the flow characteristics inside the volute.Numerical simulation results show that the partial flow structure at the bottom of the volute can effectively improve the low-velocity region and the vortex flow at the bottom of the volute,and the chamfered angle scheme can control the regular expansion and compression of the airflow.When the volute adopts the appropriate chamfer angle and the bottom split-flow structure,the total pressure loss can be reduced by 19.6%,and the static pressure recovery coefficient can be increased by 42.05%.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101001)the International Science&Technology Cooperation Program of China(No.2014DFG61950)
文摘Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972010,11028206,11371069,11372052,11402029,and 11472060)the Science and Technology Development Foundation of China Academy of Engineering Physics(CAEP),China(Grant No.2014B0201030)the Defense Industrial Technology Development Program of China(Grant No.B1520132012)
文摘Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleton of the GAHM for low mass loss and resources.Smooth eulerian level set values are calculated from the FTM interface,and are used for a local interface reconstruction.The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change.The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell.The performance of the GAHM is carefully evaluated in a benchmark test.Results show significant improvements of mass loss,clear subgrid structures,highly accurate derivatives(normals and curvatures) and low cost.The GAHM is further coupled with an incompressible multiphase flow solver,Super CE/SE,for more complex and practical applications.The updated solver is evaluated through comparison with an early droplet research.