期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Fisher线性鉴别分析的理论研究及其应用 被引量:97
1
作者 杨健 杨静宇 叶晖 《自动化学报》 EI CSCD 北大核心 2003年第4期481-493,共13页
Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一 .但是在高维、小样本情况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题 .文中引入压缩映射和同构映射的思想 ,从理论上巧妙地解决了高维、奇异情况下最... Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一 .但是在高维、小样本情况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题 .文中引入压缩映射和同构映射的思想 ,从理论上巧妙地解决了高维、奇异情况下最优鉴别矢量集的求解问题 ,而且该方法求解最优鉴别矢量集的全过程只需要在一个低维的变换空间内进行 ,这与传统方法相比极大地降低了计算量 .在此理论基础上 ,进一步为高维、小样本情况下的最优鉴别分析方法建立了一个通用的算法框架 ,即先作K L变换 ,再用Fisher鉴别变换作二次特征抽取 .基于该算法框架 ,提出了组合线性鉴别法 ,该方法综合利用了F S鉴别和J Y鉴别的优点 ,同时消除了二者的弱点 .在ORL标准人脸库上的试验表明 ,组合鉴别法所抽取的特征在普通的最小距离分类器和最近邻分类器下均达到 97%的正确识别率 ,而且识别结果十分稳定 . 展开更多
关键词 fisher鉴别准则 线性鉴别分析 FoleySammon线性鉴别分析 组合线性鉴别分析 高维小样本问题 人脸识别
在线阅读 下载PDF
基于YCbCr颜色空间和Fisher判别分析的棉花图像分割研究 被引量:25
2
作者 刘金帅 赖惠成 贾振红 《作物学报》 CAS CSCD 北大核心 2011年第7期1274-1279,共6页
棉花的分割是采棉机器人研究的关键技术。本文分别在HSV、HIS和YCbCr颜色空间下,首先根据棉花的颜色信息与背景颜色信息的差距,对样本图像中的各个对象(棉絮、棉枝、土壤等)分类;其次根据分类结果分别提取各类在各颜色空间下的样本像素... 棉花的分割是采棉机器人研究的关键技术。本文分别在HSV、HIS和YCbCr颜色空间下,首先根据棉花的颜色信息与背景颜色信息的差距,对样本图像中的各个对象(棉絮、棉枝、土壤等)分类;其次根据分类结果分别提取各类在各颜色空间下的样本像素值;再根据类间离散度最大和类内离散度最小的准则计算出Fisher判别向量和各类的质心;最后按照像素值离各质心最近的准则进行图像分割。结果表明,在YCbCr颜色空间下产生的分割噪声最小,选取此颜色空间,采用贴标签的方法自适应去噪。实验仿真表明,本方法可有效避免阳光直射和阴影的干扰,对各种情况都能准确分割,分割准确率达90.44%。 展开更多
关键词 棉花分割 fisher线性判别分析 YCBCR颜色空间 贴标签去噪
在线阅读 下载PDF
基于Fisher判别分析的贝叶斯分类器 被引量:14
3
作者 曹玲玲 潘建寿 《计算机工程》 CAS CSCD 北大核心 2011年第10期162-164,共3页
针对满足"类条件属性相互独立"假定的经典贝叶斯分类器无法有效利用类间信息的缺陷,结合Fisher线性判别分析,给出一种基于Fisher线性判别分析的贝叶斯分类器的改进算法。该算法通过寻找类与类最大分离的投影空间,将原样本向... 针对满足"类条件属性相互独立"假定的经典贝叶斯分类器无法有效利用类间信息的缺陷,结合Fisher线性判别分析,给出一种基于Fisher线性判别分析的贝叶斯分类器的改进算法。该算法通过寻找类与类最大分离的投影空间,将原样本向最大分离空间投影,以获得新样本,并采用贝叶斯分类器对新样本进行分类。实验结果表明,在给定的数据集上,该贝叶斯分类器的分类正确率较高,分类性能较好。 展开更多
关键词 贝叶斯分类器 投影变换矩阵 fisher线性判别分析 特征向量
在线阅读 下载PDF
基于Fisher线性判别分析的语音信号端点检测方法 被引量:20
4
作者 王明合 张二华 +1 位作者 唐振民 许昊 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1343-1349,共7页
传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fis... 传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fisher准则求解具有判别信息的最佳投影方向,使得投影后的特征参数具有最小类内散度和最大类间散度,从而增大清音与背景噪声的可分离性。在不同语音库上的实验结果表明,F-MFCC能够在不同信噪比和背景噪声条件下提高语音端点检测的准确率。 展开更多
关键词 语音处理 语音端点检测 梅尔频率倒谱系数 fisher线性判别分析
在线阅读 下载PDF
基于排列组合熵和加权核Fisher的肌电跌倒检测 被引量:4
5
作者 席旭刚 武昊 +1 位作者 左静 罗志增 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第11期1685-1689,1700,共6页
为实现老年人的跌倒与日常行为动作的模式识别,提出了一种基于排列组合熵和加权核Fisher线性判别的表面肌电信号跌倒识别方法.以腓肠肌和股外侧肌2路肌电信号对应的排列组合熵为特征向量输入加权核Fisher线性分类器进行模式识别,对跌倒... 为实现老年人的跌倒与日常行为动作的模式识别,提出了一种基于排列组合熵和加权核Fisher线性判别的表面肌电信号跌倒识别方法.以腓肠肌和股外侧肌2路肌电信号对应的排列组合熵为特征向量输入加权核Fisher线性分类器进行模式识别,对跌倒与坐下、蹲下和行走进行识别.实验结果表明,该方法的跌倒识别率为93.33%,特异度100%,优于其他分类方法. 展开更多
关键词 表面肌电信号 跌到识别 排列组合熵 加权核fisher线性判别
在线阅读 下载PDF
基于二维Fisher线性判别的掌纹识别方法 被引量:15
6
作者 郭金玉 苑玮琦 《计算机工程》 CAS CSCD 北大核心 2008年第6期212-213,共2页
在Fisher线性判别(FLD)中,类内离散矩阵总是奇异的。为了解决矩阵的奇异性问题,应用一种新的二维Fisher线性判别(2DFLD)直接进行矩阵投影。对于PolyU掌纹图像库,分别用PCA,PCA+FLD和2DFLD提取特征掌纹子空间,将待识别图像投影到低维子... 在Fisher线性判别(FLD)中,类内离散矩阵总是奇异的。为了解决矩阵的奇异性问题,应用一种新的二维Fisher线性判别(2DFLD)直接进行矩阵投影。对于PolyU掌纹图像库,分别用PCA,PCA+FLD和2DFLD提取特征掌纹子空间,将待识别图像投影到低维子空间上,用余弦距离进行掌纹匹配。实验结果表明,与PCA相比,PCA+FLD的识别率最多提高1.18%。2DFLD识别率最高达到99.34%,比PCA+FLD提高7.61%,特征提取仅耗时0.047s。 展开更多
关键词 fisher线性判别 主成分分析 二维FLD 掌纹识别
在线阅读 下载PDF
融合Fisher线性判别分析的多维特征融合情景感知推荐方法 被引量:6
7
作者 赵志华 陈莉 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第8期40-46,共7页
针对采用单维特征建立用户的偏好模型所导致的推荐结果无法有效覆盖用户潜在偏好特征而影响推荐质量的问题,提出了一种基于Fisher线性判别分析的多维特征融合情景感知推荐方法。该方法建立了包含时间衰减度、属性偏好、偏好可影响程度... 针对采用单维特征建立用户的偏好模型所导致的推荐结果无法有效覆盖用户潜在偏好特征而影响推荐质量的问题,提出了一种基于Fisher线性判别分析的多维特征融合情景感知推荐方法。该方法建立了包含时间衰减度、属性偏好、偏好可影响程度等多维特征的偏好样本空间;采用特征融合、投影变换等方法,在最佳鉴别矢量空间基于Fisher判别准则融合用户的多维特征;采用拉格朗日乘子法求解最优投影方向,建立起多维特征优化的偏好获取模型。在BookCrossing与Netfilix数据集上的实验结果表明:与现有方法相比,所提方法的推荐准确率平均提高了16.61%,多样性平均提高了约38.01%,能够有效地覆盖用户的潜在偏好特征,并取得更好的推荐质量。 展开更多
关键词 多特征融合 fisher线性判别分析 属性偏好 时间衰减 情景感知推荐
在线阅读 下载PDF
基于核的Fisher极小鉴别分析及人脸识别 被引量:3
8
作者 王建国 郑宇杰 杨静宇 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5516-5518,5522,共4页
Fisher鉴别分析被公认为是特征抽取的有效方法之一,但由于其只能抽取线性特征,而对于实际应用中复杂的样本图像分布,抽取非线性鉴别特征显得十分必要。先前的基于核Fisher鉴别分析算法虽然解决了非线性特征抽取问题,但是其存在最终特征... Fisher鉴别分析被公认为是特征抽取的有效方法之一,但由于其只能抽取线性特征,而对于实际应用中复杂的样本图像分布,抽取非线性鉴别特征显得十分必要。先前的基于核Fisher鉴别分析算法虽然解决了非线性特征抽取问题,但是其存在最终特征维数受类别数限制的问题。为了能够进一步提高特征提取效率,提出了一种基于核的Fisher极小鉴别分析方法,该方法使得最终特征维数不受类别数限制。在Yale和NUST603人脸库上进行了鉴别性能实验,实验结果验证了该方法的有效性。 展开更多
关键词 核主成分分析 fisher鉴别分析 特征抽取 人脸识别 非线性鉴别特征
在线阅读 下载PDF
一种改进Fisher准则的线性鉴别分析方法 被引量:5
9
作者 戴文战 周昌亮 《计算机工程与应用》 CSCD 2013年第3期210-212,221,共4页
目前线性鉴别分析以Fisher准则或是逐对类加权Fisher准则为依据,但前者不能限制离群类,后者计算量大,鉴于此,提出一种改进Fisher准则用于线性鉴别分析。回顾了Fisher准则和逐对类加权Fisher准则,指出其中问题产生的根本原因。提出类距... 目前线性鉴别分析以Fisher准则或是逐对类加权Fisher准则为依据,但前者不能限制离群类,后者计算量大,鉴于此,提出一种改进Fisher准则用于线性鉴别分析。回顾了Fisher准则和逐对类加权Fisher准则,指出其中问题产生的根本原因。提出类距离和类离群程度的定义,以类距离为依据判定各类离群程度,以类离群程度为参数赋予各类权值,重新计算总体类均值和类间离散度矩阵,以得到限制离群类、突出常规类的改进Fisher准则。这种改进Fisher准则计算简单,能有效限制离群类。 展开更多
关键词 线性鉴别分析 fisher准则 离群类 人脸识别
在线阅读 下载PDF
基于图像分块的改进Fisher人脸识别算法 被引量:3
10
作者 梁淑芬 甘俊英 《计算机工程与应用》 CSCD 北大核心 2009年第19期165-167,共3页
二维方法用于图像矩阵特征提取,虽然速度快,但影响了分类速度。针对二维线性鉴别分析(Two-Dimensional Linear Discriminant Analysis,2DLDA)的特点,研究了一种基于图像分块的改进Fisher人脸识别算法,该算法首先对人脸图像进行压缩降维... 二维方法用于图像矩阵特征提取,虽然速度快,但影响了分类速度。针对二维线性鉴别分析(Two-Dimensional Linear Discriminant Analysis,2DLDA)的特点,研究了一种基于图像分块的改进Fisher人脸识别算法,该算法首先对人脸图像进行压缩降维处理,得到相应的特征矩阵,然后利用改进Fisher算法对特征矩阵进行类间离散度矩阵和类内离散度矩阵的计算,该算法充分考虑了类别信息,避免了传统Fisher算法造成的小样本问题,有效提高了分类速度。基于ORL(Olivetti Research Laboratory)与Yale人脸数据库的实验结果证明了该算法的有效性。 展开更多
关键词 人脸识别 二维线性鉴别分析 改进fisher算法
在线阅读 下载PDF
基于向量组的Fisher线性鉴别分析方法 被引量:5
11
作者 朱明旱 邵湘怡 《计算机工程与应用》 CSCD 北大核心 2011年第6期205-207,215,共4页
提出了一种基于向量组的Fisher线性鉴别分析方法。该方法先将原始的高维向量分割为低维的子向量组,再对向量组运用Fisher线性鉴别分析。这种处理方法,不但能够解决任意高维下的小样本问题,而且通过选择恰当的子向量维数,可以从向量中抽... 提出了一种基于向量组的Fisher线性鉴别分析方法。该方法先将原始的高维向量分割为低维的子向量组,再对向量组运用Fisher线性鉴别分析。这种处理方法,不但能够解决任意高维下的小样本问题,而且通过选择恰当的子向量维数,可以从向量中抽取出最有效的特征值。此外,基于向量组的Fisher线性鉴别分析是Fisher线性鉴别分析和二维Fisher线性鉴别分析的进一步推广。 展开更多
关键词 fisher线性鉴别分析 类间散布矩阵 类内散布矩阵 高维小样本问题
在线阅读 下载PDF
基于正则化边界Fisher分析和稀疏表示分类的人脸识别方法 被引量:2
12
作者 黄可坤 《计算机应用》 CSCD 北大核心 2013年第6期1723-1726,共4页
边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较... 边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较小的数乘上单位阵构造正则项,然后加到MFA的类内散度矩阵中,使得所得矩阵是可逆的,并且不会丢失对分类有益的分量,也容易确定其中的参数。因为一个样本通常能被少数几个距离比较近的同类样本很好地线性表达,在正则化MFA降维之后结合使用稀疏表示分类算法进一步提高识别率。在FERET和AR数据库上的实验表明,对比一些经典的降维方法,使用该方法能显著提高识别率。 展开更多
关键词 人脸识别 降维 fisher线性判别分析 边界fisher分析 稀疏表示分类
在线阅读 下载PDF
基于Fisher线性判别分析的情景感知推荐方法 被引量:3
13
作者 杨茜 《计算机工程与设计》 北大核心 2018年第3期848-853,共6页
为解决现有推荐方法无法兼顾多种度量准则,提出一种基于线性判别分析的情景感知推荐方法。获取用户视图下的偏好项目特征、项目视图下的项目吸引度等多视图数据,通过特征融合、投影变换,在最佳鉴别矢量空间引入Fisher判别准则,采用Lagra... 为解决现有推荐方法无法兼顾多种度量准则,提出一种基于线性判别分析的情景感知推荐方法。获取用户视图下的偏好项目特征、项目视图下的项目吸引度等多视图数据,通过特征融合、投影变换,在最佳鉴别矢量空间引入Fisher判别准则,采用Lagrange乘子法求解最优投影方向。实验结果表明,与现有方法相比,所提方法降低了时间开销,准确度平均提高18.91%,多样性平均提高32.79%,验证了其能够兼顾多种度量准则,提高了推荐质量。 展开更多
关键词 多视图学习 线性判别分析 fisher准则 LAGRANGE乘子法 推荐系统
在线阅读 下载PDF
基于FLDA、CPCA与HMM的人脸识别
14
作者 赵晶 张强 +1 位作者 魏小鹏 周士华 《计算机工程与应用》 CSCD 北大核心 2008年第16期191-193,共3页
为了获得具有较高识别率的算法,提出了一种将Fisher线性鉴别分析(Fisher Linear Discriminant Analysis)、复主分量分析(Principal Analysis in the Complex Space)与隐马尔可夫模型(Hidden Markov Models)相结合进行人脸识别的方法。... 为了获得具有较高识别率的算法,提出了一种将Fisher线性鉴别分析(Fisher Linear Discriminant Analysis)、复主分量分析(Principal Analysis in the Complex Space)与隐马尔可夫模型(Hidden Markov Models)相结合进行人脸识别的方法。对于输入的不同光照、人脸表情和姿势的图像先进行归一化处理,然后将归一化后的图像转化成一维向量,再用FLDA方法提取每幅图像的特征,形成新的复向量空间;通过运用复主分量分析,来抽取人脸图像的有效鉴别特征;最后通过HMM对这些特征进行训练,得到一个优化的HMM并应用于识别。在ORL人脸数据库中进行实验,实验结果表明,该方法具有较高的识别率。 展开更多
关键词 人脸识别 fisher线性鉴别分析 隐马尔可夫模型 复主分量分析
在线阅读 下载PDF
基于加权Fisher准则的线性鉴别分析及人脸识别 被引量:8
15
作者 郭娟 林冬 戚文芽 《计算机应用》 CSCD 北大核心 2006年第5期1037-1039,1049,共4页
提出了一种基于加权Fisher准则线性鉴别分析的人脸识别方法。该方法引入了一种新的权函数对Fisher准则加权,以提高样本在低维线性空间中的可分性,然后探讨了高维、奇异情况下如何降低运算量的问题,并给出了一个简单高效的算法。在ORL标... 提出了一种基于加权Fisher准则线性鉴别分析的人脸识别方法。该方法引入了一种新的权函数对Fisher准则加权,以提高样本在低维线性空间中的可分性,然后探讨了高维、奇异情况下如何降低运算量的问题,并给出了一个简单高效的算法。在ORL标准人脸库上进行测试,由该算法抽取的特征在最近邻分类器和最小距离分类器下均达到96%的正确识别率,这一结果优于经典的特征脸和Fisher脸方法在该库上的识别结果。 展开更多
关键词 线性鉴别分析 加权fisher准则 特征抽取 人脸识别
在线阅读 下载PDF
一种新的L_1度量Fisher线性判别分析研究 被引量:8
16
作者 余景丽 胡恩良 张涛 《计算机工程与应用》 CSCD 北大核心 2018年第4期128-134,共7页
Fisher线性判别分析(Fisher Linear Discriminant Analysis,FLDA)是一种典型的监督型特征提取方法,旨在最大化Fisher准则,寻求最优投影矩阵。在标准Fisher准则中,涉及到的度量为L_2范数度量,此度量通常缺乏鲁棒性,对异常值点较敏感。为... Fisher线性判别分析(Fisher Linear Discriminant Analysis,FLDA)是一种典型的监督型特征提取方法,旨在最大化Fisher准则,寻求最优投影矩阵。在标准Fisher准则中,涉及到的度量为L_2范数度量,此度量通常缺乏鲁棒性,对异常值点较敏感。为提高鲁棒性,引入了一种基于L_1范数度量的FLDA及其优化求解算法。实验结果表明:在很多情形下,相比于传统的L_2范数FLDA,L_1范数FLDA具有更好的分类精度和鲁棒性。 展开更多
关键词 fisher线性判别分析 fisher准则 L1范数度量 鲁棒性 特征提取
在线阅读 下载PDF
融合全局和局部特征的Fisherfaces方法 被引量:3
17
作者 王慧泽 龚声蓉 刘纯平 《计算机工程与应用》 CSCD 北大核心 2008年第24期194-196,211,共4页
提出了一种融合全局和局部特征的Fisherfaces方法。在Fisher线性准则下,抽取出图像全局特征和局部特征的最佳分类特征。计算待识别样本和训练样本集的加权欧氏距离。在最近邻准则下,判别待识别样本的类别,在ORL人脸库上进行的对比实验... 提出了一种融合全局和局部特征的Fisherfaces方法。在Fisher线性准则下,抽取出图像全局特征和局部特征的最佳分类特征。计算待识别样本和训练样本集的加权欧氏距离。在最近邻准则下,判别待识别样本的类别,在ORL人脸库上进行的对比实验结果表明该方法的优越性。 展开更多
关键词 人脸识别 主成分分析 全局特征 局部特征 fisher线性准则 最佳分类特征
在线阅读 下载PDF
FLDA在单样本人脸识别中的应用研究 被引量:1
18
作者 马龙 万康康 韩小纯 《计算机应用与软件》 CSCD 北大核心 2014年第4期175-177,共3页
随着人脸识别技术的不断发展,单样本人脸识别已成为当今的一个热点。针对单样本人脸识别问题,提出一种基于通用框架学习的人脸识别方法。以大量的通用样本与各个单样本按一定比例叠加的方式,增加每个类的训练样本总数,有效地运用FLDA方... 随着人脸识别技术的不断发展,单样本人脸识别已成为当今的一个热点。针对单样本人脸识别问题,提出一种基于通用框架学习的人脸识别方法。以大量的通用样本与各个单样本按一定比例叠加的方式,增加每个类的训练样本总数,有效地运用FLDA方法进行特征抽取,将所有样本投影到特征子空间,再利用最近邻方法完成人脸识别,一定程度上减轻了人脸的表情、姿态、光照等因素对识别效果的影响,提高了识别率。该方法的有效性分别在ORL及Yale两大人脸库上得到了验证。 展开更多
关键词 人脸识别 单训练样本 通用框架学习 fisher线性判别分析
在线阅读 下载PDF
基于Fisher判别字典学习的可拒识模式分类模型 被引量:1
19
作者 廖重阳 张洋 +1 位作者 屈光中 毕云云 《计算机工程》 CAS CSCD 北大核心 2016年第4期202-208,共7页
针对模式分类任务中测试样本存在未知类别输入的问题,在稀疏表示分类技术的基础上提出一种可拒识模式分类模型。该模型在字典学习的目标函数中加入Fisher判别约束,使样本在该字典下分解的系数具有较大的类间散度和较小的类内散度,将训... 针对模式分类任务中测试样本存在未知类别输入的问题,在稀疏表示分类技术的基础上提出一种可拒识模式分类模型。该模型在字典学习的目标函数中加入Fisher判别约束,使样本在该字典下分解的系数具有较大的类间散度和较小的类内散度,将训练样本在已学习字典下进行分解,并把分解后的系数构建多个局部线性块,为已构建的线性块建立超球覆盖模型,用于描述训练类样本系数的分布状况。对于测试样本,根据在已学字典下的分解系数是否在训练样本系数的覆盖模型范围内,做出拒识或接受分类处理的判决。在MINST手写体数据库上的实验结果表明,该模型在保持较高正确识别率的同时,能对非训练类样本进行有效的拒识处理。 展开更多
关键词 可拒识 字典学习 fisher判别分析 基于稀疏表示的分类 流形 最大线性块
在线阅读 下载PDF
融合Fisher判别分析与波动序列的音乐推荐方法 被引量:6
20
作者 薛董敏 赵志华 《计算机科学与探索》 CSCD 北大核心 2017年第8期1314-1323,共10页
现有的音乐推荐方法多是采用不同的历史偏好相关性度量方法直接为用户生成推荐音乐列表,而不考虑用户历史喜好音乐行为所体现出的用户兴趣的波动性,影响了推荐音乐的准确率。针对这个问题,提出了一种融合Fisher线性判别分析与波动序列... 现有的音乐推荐方法多是采用不同的历史偏好相关性度量方法直接为用户生成推荐音乐列表,而不考虑用户历史喜好音乐行为所体现出的用户兴趣的波动性,影响了推荐音乐的准确率。针对这个问题,提出了一种融合Fisher线性判别分析与波动序列的音乐行为偏好获取方法。首先获取音乐的社会化标签与音频特征,采用Fisher线性判别分析对两类样本数据进行特征融合,通过投影变换并引入Fisher判别准则,获取具有最大类间离散度,最小类内离散度的音乐特征分类方向。然后结合用户的历史喜好音乐获取音乐类型基点、类型波动幅度,再以音乐类型基点为中心,以类型波动幅度为半径获取用户的喜好音乐类型,并据此为用户生成推荐音乐列表。在真实数据集LFM上的仿真实验结果表明,所提出方法能够取得更好的P@R值与覆盖率,提升了音乐推荐精度与推荐质量。 展开更多
关键词 fisher线性判别分析 波动序列 音乐类型基点 社会化标签 音乐推荐系统
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部