期刊文献+
共找到429篇文章
< 1 2 22 >
每页显示 20 50 100
Improving the spaceborne GNSS-R altimetric precision based on the novel multilayer feedforward neural network weighted joint prediction model
1
作者 Yiwen Zhang Wei Zheng Zongqiang Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期271-284,共14页
Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at... Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry. 展开更多
关键词 GNSS-R satellite constellations Sea surface altimetric precision Underwater navigation Multilayer feedforward neural network
在线阅读 下载PDF
基于区间Ⅱ型FNN的MSWI过程炉膛温度控制 被引量:2
2
作者 汤健 田昊 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第2期157-172,共16页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析以确定对其产生影响的关键操作变量;然后,根据上述操作变量基于线性回归决策树(linear regression decision tree,LRDT)建立多入单出(multiple-input single-output,MISO)炉膛温度模型;最后,构建具有自适应参数学习的IT2FNN控制器,并证明其稳定性。在MSWI过程数据集上构建模型并进行控制,实验结果验证了所提方法的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 炉膛温度控制 线性回归决策树(linear regression decision tree LRDT) 区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network IT2fnn) 梯度下降法 李雅普诺夫稳定性分析
在线阅读 下载PDF
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
3
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods feedforward neural networks Inverse problems Least squares approximations Mathematical models Multilayer neural networks
在线阅读 下载PDF
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类 被引量:2
4
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(SSAE) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(Ffnn)
在线阅读 下载PDF
基于改进递归区间2型直觉FNN的时间序列预测
5
作者 陈孝慈 谭章禄 《统计与决策》 CSSCI 北大核心 2024年第20期61-66,共6页
文章针对时间序列预测中存在的高度随机性与不确定性,提出了一种改进递归区间2型直觉模糊神经网络预测模型。首先,借助直觉评估和系统的噪声容忍度,通过区间2型直觉模糊集来增强对不确定性的建模;其次,将每个模糊推理规则激发强度反馈... 文章针对时间序列预测中存在的高度随机性与不确定性,提出了一种改进递归区间2型直觉模糊神经网络预测模型。首先,借助直觉评估和系统的噪声容忍度,通过区间2型直觉模糊集来增强对不确定性的建模;其次,将每个模糊推理规则激发强度反馈给自身来建立本地内部反馈机制,从而充分挖掘数据之间的内在信息;然后,将改进的密度聚类算法与直觉模糊集触发强度相结合来确定模糊规则,使模型能够自适应地调整结构,从而适应时间序列数据的变化趋势;最后,通过噪声混沌序列、非线性系统辨识,以及高频金融时间序列预测实验,验证了所提方法具有更高的预测精度和泛化性能。 展开更多
关键词 时间序列 直觉模糊 前馈神经网络 自适应 预测
在线阅读 下载PDF
基于负载预测的节能型泵控单元稳压控制研究
6
作者 王飞 郝钰杰 +3 位作者 赵慧兵 刘克毅 陈革新 艾超 《液压与气动》 北大核心 2025年第7期53-66,共14页
针对泵控单元静态精度不高和动态性能受限的问题,为提高泵控单元的压力控制能力,提出了一种基于负载预测前馈补偿的模糊PID稳压控制方法。首先,建立了泵控单元中伺服电机和定量泵的数学模型;其次,设计了基于长短期记忆神经网络的负载预... 针对泵控单元静态精度不高和动态性能受限的问题,为提高泵控单元的压力控制能力,提出了一种基于负载预测前馈补偿的模糊PID稳压控制方法。首先,建立了泵控单元中伺服电机和定量泵的数学模型;其次,设计了基于长短期记忆神经网络的负载预测算法,进行了模型的训练,优化了模型的超参数设置,计算了评价指标,进行了仿真验证;然后,对基于负载预测前馈补偿的模糊PID控制方法进行仿真分析;最后,开展试验研究,验证了该控制方法的效果。结果表明,评价指标印证了负载预测模型具有较高的预测精度;在负载预测结果作为前馈信号输入补偿的前提下,与传统PID控制器相比,模糊PID控制器在两种信号响应下的输出压力和期望压力之间的误差分别减小了72.2%和71.1%,实现了泵控单元的高精度稳压控制。 展开更多
关键词 泵控单元 负载预测 前馈补偿 模糊PID 稳压控制 长短期记忆神经网络
在线阅读 下载PDF
基于模糊神经网络(FNN)的赤潮预警预测研究 被引量:17
7
作者 王洪礼 葛根 李悦雷 《海洋通报》 CAS CSCD 北大核心 2006年第4期36-41,共6页
为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好... 为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。将模糊神经网络(FNN)技术引入赤潮预测研究,并与普通BP网络、RBF网络的结果作比较,结果表明,该模型能够较好地反演出各种理化因子与夜光藻密度的非线性对应变化规律,有更好的预测功能。 展开更多
关键词 赤潮预测 模糊神经网络(fnn) BP算法
在线阅读 下载PDF
EFNN——一种增强型模糊神经网络 被引量:3
8
作者 陈保国 朱奕 +1 位作者 张华 张家余 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2001年第1期89-92,共4页
提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网... 提出了一种较为广义的增强型模糊神经网络 ,以达到更高的非线性系统逼近能力 .该网络模糊规则的结论以函数形式给出 ,从而决定了网络的结构由两个子网络组成 ,即特征网络和功能网络 .网络采用梯度算法来修正网络的参数 .仿真表明 :该网络具有较强的非线性逼近能力和较快的学习速度 . 展开更多
关键词 特征网络 功能网络 增强型模型神经网络 梯度算法
在线阅读 下载PDF
基于FNNs的闭式循环柴油机配氧前馈控制策略研究 被引量:2
9
作者 李雁飞 张卫东 +1 位作者 郭江华 陈国钧 《海军工程大学学报》 CAS 北大核心 2005年第1期76-79,96,共5页
配氧控制是闭式循环柴油机(CCD)系统的关键技术之一,为改善其动态特性,在 PID反馈控制的基础上,设计了基于模糊神经网络(FNNs)模型的前馈控制器,并采用 PID反馈控制输出信号作为网络训练的误差信号,使模糊神经网络逐步具有前馈补偿能力... 配氧控制是闭式循环柴油机(CCD)系统的关键技术之一,为改善其动态特性,在 PID反馈控制的基础上,设计了基于模糊神经网络(FNNs)模型的前馈控制器,并采用 PID反馈控制输出信号作为网络训练的误差信号,使模糊神经网络逐步具有前馈补偿能力,从而能够有效对负荷扰动进行及时补偿.仿真结果表明,采用FNNs前馈控制器后,可以有效改善氧气控制的动态特性,并且具有快速的学习速度和很强的适应能力. 展开更多
关键词 柴油机 闭式循环 前馈 模糊系统 神经网络 仿真
在线阅读 下载PDF
基于粗糙集高速公路混沌T-S FNN控制仿真 被引量:4
10
作者 庞明宝 贺国光 +1 位作者 赵新萍 东方 《系统仿真学报》 CAS CSCD 北大核心 2012年第2期370-376,共7页
研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,... 研究基于粗糙集理论的高速公路混沌系统模糊神经网络入口匝道控制方法。针对高速公路车流量不确定性特点,提出了通过数据挖掘技术建立交通流入口匝道智能混沌控制器知识库的思想;设计了以密度、上游流量和最大李亚普诺夫指数作为输入,红灯时间作为输出的T-S模糊神经网络混沌控制器;采用粗糙集理论建立混沌控制器知识库,确定模糊神经网络控制器结构并提取模糊规则;采用模糊神经网络方法对控制器参数进行优化。仿真结果表明:采用该方法设计的智能混沌控制器,可实现保持高速公路有序运动、避免交通堵塞、提高交通通行能力的目的,是提高高速公路管理控制水平的有效方法。 展开更多
关键词 高速公路 混沌控制 T-S模糊神经网络 粗糙集 模糊C-均值聚类 仿真
在线阅读 下载PDF
基于通道变换和Transformer的高光谱图像变化检测方法
11
作者 刘文力 高峰 +2 位作者 张浩鹏 董军宇 吴淳桐 《计算机学报》 北大核心 2025年第4期971-984,共14页
当前基于Transformer的高光谱图像变化检测方法通过自注意力机制模拟长距离依赖,能够有效建模全局上下文信息。然而,现有方法仍面临着两个主要问题:一是Transformer模型计算复杂度高,导致模型在处理高维度数据时效率低下;二是现有模型... 当前基于Transformer的高光谱图像变化检测方法通过自注意力机制模拟长距离依赖,能够有效建模全局上下文信息。然而,现有方法仍面临着两个主要问题:一是Transformer模型计算复杂度高,导致模型在处理高维度数据时效率低下;二是现有模型对高光谱图像的波段信息利用有限,在光谱维度上缺乏特征交互。针对这些问题,本文提出了一种基于通道变换和Transformer的高光谱图像变化检测方法,以更高效地利用高光谱图像中复杂的光谱和空间信息。创新之处主要体现在两个方面:其一,采用基于通道变换和注意力机制的特征提取模块。该模块改进了传统自注意力计算方式并加入通道信息交互模块,一方面降低了传统Transformer二次方的计算复杂度,使模型更适用于处理高维度数据;另一方面实现了对高光谱图像空间和光谱信息的高效利用,增强了模型对高级语义信息的理解及对复杂变化的感知能力。其二,设计了双分支门控前馈神经网络。该网络实现了模型对特征信息的细粒度调控,提升了模型对关键地物变化和细微差异的捕捉能力。实验结果显示,本文方法在River和Hermiston数据集上的准确率分别达到了96.28%和95.97%,Kappa系数分别达到了79.44%和88.90%。相比于当前主流方法,本文模型在这两个数据集上准确率分别提升了0.60%和0.69%,Kappa系数也分别提升了10.30%和2.33%,验证了本文方法在高光谱图像变化检测任务中的有效性。 展开更多
关键词 变化检测 高光谱图像 注意力机制 双分支门控前馈神经网络 通道变换模块
在线阅读 下载PDF
基于QPSO-FNN的混沌时间序列预测 被引量:3
12
作者 潘玉民 邓永红 张全柱 《计算机应用与软件》 CSCD 北大核心 2013年第8期91-94,98,共5页
提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-m... 提出一种太阳黑子月均数混沌时序的模糊神经网络预测方法。该方法根据时间序列的延迟因子和饱和嵌入维数重构相空间,利用Lyapunov指数法判别时序系统的混沌特性,采用混合pi-sigma模糊神经推理方法拟合混沌吸引子特性。其中混合pi-sig-ma模糊神经网络以高斯基函数作为模糊子集的隶属度函数,在线动态调整隶属度函数和结论参数,并采用量子粒子群算法(QPSO)优化网络初始参数,提高预测准确度。该模型具有物理意义清晰、预测精度高以及预测结果确定等优点,仿真实验结果证明了该方法的有效性。 展开更多
关键词 混沌时间序列 太阳黑子 混合pi-sigma 模糊神经网络 QPSO-fnn 预测
在线阅读 下载PDF
基于FNN解耦纸张定量水分控制策略的研究与应用 被引量:4
13
作者 胡亚南 马文明 王孟效 《中国造纸》 CAS 北大核心 2017年第7期48-53,共6页
针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制... 针对纸张抄造过程中纸张定量与水分之间存在强耦合的问题,提出一种模糊神经网络(Fuzzy Neural Network,FNN)的解耦控制器,首先利用模糊控制对控制系统进行耦合补偿,然后利用神经网络的自学习、自调整能力不断在控制过程中优化模糊控制规则及解耦补偿参数,成功地将纸张抄造过程的多变量系统转变为单变量系统,实现纸张定量、水分之间的解耦。仿真结果表明,采用FNN解耦控制器具有较好的动态响应和较强的鲁棒性。将该策略应用于国内某造纸厂的纸板机控制系统,纸张定量控制精度为±3.9 g/m^2左右,水分控制精度为±1.0%左右,满足该纸机定量水分高精度控制要求。 展开更多
关键词 定量 水分 模糊控制 神经网络 fnn
在线阅读 下载PDF
高斯激活函数特征值分解修剪技术的D-FNN算法研究 被引量:3
14
作者 何正风 张德丰 孙亚民 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期34-39,共6页
提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获... 提出了一种D-FNN的新算法。其算法的最主要特点是:D-FNN选择高斯函数作为网络的激活函数和模糊系统的隶属函数,该算法不仅具有强大的全局映射泛化能力,而且在细化局部方面也有效;使用特征值分解修剪技术使得网络结构不会持续增长,可获得更为紧凑的D-FNN结构,避免了过拟合现象。最后通过对Her-mite多项式逼近能力来验证所提方案的有效性。仿真结果表明使用特征值分解修剪技术和高斯激活函数的D-FNN具有良好的性能。 展开更多
关键词 动态模糊神经网络 模糊规则 修剪技术 特征值分解
在线阅读 下载PDF
基于神经网络实用稳定性理论提高FNN容错性的方法及其在电力系统中的应用 被引量:5
15
作者 姜惠兰 孙雅明 《中国电机工程学报》 EI CSCD 北大核心 2003年第5期29-34,共6页
在神经网络(NN)实用稳定性理论和对前馈神经网络(feed-forward neural network, FNN)容错性能(fault- tolerance performance, FTP)理论分析的基础上,提出了一种提高FNN容错性的实用方法,该法建立了基于FNN学习与模糊处理相结合的FNN模... 在神经网络(NN)实用稳定性理论和对前馈神经网络(feed-forward neural network, FNN)容错性能(fault- tolerance performance, FTP)理论分析的基础上,提出了一种提高FNN容错性的实用方法,该法建立了基于FNN学习与模糊处理相结合的FNN模型重构机理,以改变FNN“伪吸引子”和“伪吸引域”来地提高FNN的FTP。文中以电力输电线路故障诊断为例,通过仿真测试证明了所提方法的可行性,并能有效地提高FNN的FTP,所研究的方法为基于FNN实时信息处理系统的实际应用提供了重要的保证。 展开更多
关键词 电力系统 神经网络 实用稳定性理论 fnn 容错性 输电线路 故障诊断
在线阅读 下载PDF
基于FNN的覆冰机器人越障机械臂轨迹跟踪控制 被引量:2
16
作者 郝晓弘 刘晓鹏 +1 位作者 岳和平 张帆 《计算机工程与应用》 CSCD 北大核心 2010年第8期232-233,237,共3页
覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具... 覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具有很好的效果,表明控制策略和理论分析的可行性。 展开更多
关键词 输电线路 覆冰机器人 模糊神经网络 自适应性
在线阅读 下载PDF
基于规则产生准则与修剪策略的D-FNN算法研究 被引量:2
17
作者 左军 周灵 李晓东 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期43-48,共6页
提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与... 提出了一种D-FNN结构及其学习算法,该D-FNN的结构基于径向基神经网络。模糊规则的产生由输出误差或可容纳边界的有效半径决定。修剪技术的应用,使得网络结构能够保持紧凑,学习速度快,确保系统的泛化能力。对所提算法作了详细探讨,并与相关算法作比较,从而发现了D-FNN的独特思想。编写了D-FNN的仿真程序,对具体案例进行了仿真。结果表明,D-FNN具有紧凑的结构和优秀的性能。 展开更多
关键词 动态模糊神经网络 径向基函数 模糊规则 修剪策略
在线阅读 下载PDF
FNN在数据库模糊查询中的研究 被引量:2
18
作者 陈逸菲 张颖超 《计算机应用研究》 CSCD 北大核心 2004年第11期44-46,共3页
提出了一种基于模糊神经网络对数据库模糊查询的新方法,将模糊理论、模糊神经网络与数据库系统相结合。利用FNN直接生成隶属函数,来完成模糊查询,避免了直接指定隶属函数所带来的主观性,并能较好地反映数据的特征。
关键词 模糊神经网络 隶属函数 模糊查询 数据库
在线阅读 下载PDF
FNN上的反向传播学习算法 被引量:2
19
作者 毛国君 宋广军 杨名生 《计算机应用与软件》 CSCD 1998年第4期34-38,共5页
近几年来,模糊神经网络(FNN)的研究引起了广泛的注意。本文对FNN上的反向传播学习方法加以讨论。使用输入均值和输出权重参量来进行模糊化和反模糊化处理,学习的目的是调整这两个参量到合适的值。
关键词 模糊神经网络 反向传播学习 算法
在线阅读 下载PDF
基于FTA和FNN的液压系统故障诊断方法研究 被引量:3
20
作者 游张平 叶晓平 +1 位作者 朱银法 胡笑奇 《机械科学与技术》 CSCD 北大核心 2013年第12期1855-1858,共4页
针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家... 针对液压系统故障的复杂性和不确定性等特点,传统的故障推理方法难以满足液压系统故障诊断的要求,提出了基于故障树分析和专家经验知识的模糊神经网络故障诊断方法。以起重设备液压系统为研究对象,建立故障树模型,基于故障树信息和专家经验知识,建立模糊神经网络诊断模型及并提取训练数据,在此基础上,运用统计参数法确定模糊预处理所需的模糊隶属函数。将训练好的网络模型应用于实例诊断,实验结果验证了该方法的实用性和有效性。 展开更多
关键词 液压系统 故障诊断 故障树分析 神经网络
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部