期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characteristics of magnetic Fe_3O_4 nanoparticles encapsulated with human serum albumin 被引量:3
1
作者 何捍卫 刘红江 +2 位作者 周科朝 王维 容鹏飞 《Journal of Central South University of Technology》 EI 2006年第1期6-11,共6页
Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin... Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis. 展开更多
关键词 fe3o4 nanoparticle human serum albumin chemical precipitation method magnetic resonance imaging contrast agent
在线阅读 下载PDF
Synthesis and characterization of Fe_3O_4 magnetic nanoparticles and their heating effects under radiofrequency capacitive field
2
作者 李旭红 冯志明 +3 位作者 欧阳伟炜 谢小雪 廖遇平 唐劲天 《Journal of Central South University》 SCIE EI CAS 2010年第6期1185-1189,共5页
Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.... Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration. 展开更多
关键词 fe3o4 magnetic nanoparticles radiofrequency capacitive field SYNTHESIS characterization heating effects
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部