Strain amplitude dependence of the logarithmic decrement was measured and studied on an AZ61 magnesium alloy at room temperature. Measurements were carried out before and after isochronal thermal treatment step by ste...Strain amplitude dependence of the logarithmic decrement was measured and studied on an AZ61 magnesium alloy at room temperature. Measurements were carried out before and after isochronal thermal treatment step by step with increasing temperature. For all specimens, the strain dependence of the logarithmic decrement exhibits two regions. At lower strains the logarithmic decrement is strain independent and in the higher strain region it depends strongly on strain amplitude. The strain-independent logarithmic decrement is mainly composed of thermoelastic damping and dislocation damping, which can be explained by Granato-Lticke theory. In addition, the strain-independent logarithmic decrement for the specimens annealed at higher temperatures is a little lower than that for as-cast specimen, and it increases with increasing temperature of heat treatment. Microstructure changes due to heat treatment are responsible for changes of the logarithmic decrement.展开更多
AZ31 alloy sheet fabricated by rolling was processed by friction stir processing(FSP) with different passes. The effect of FSP on the microstructure and damping capacity of AZ31 alloy sheet was discussed. The fine and...AZ31 alloy sheet fabricated by rolling was processed by friction stir processing(FSP) with different passes. The effect of FSP on the microstructure and damping capacity of AZ31 alloy sheet was discussed. The fine and equiaxed grains were obtained in the stirred zone(SZ) for FSPed samples from 1 pass to 3 passes with the average grain size of 10.6, 10.4 and 13.6 μm, respectively. The damping peak P_1 was presented on the curves of temperature-dependent damping capacity for FSPed samples. The damping peak P_2 was restrained after FSP and the damping peak P_1 was a relaxation process. The FSPed samples(2-pass FSP and 3-pass FSP) obtained high damping capacity. The best damping valuesQ_0^(-1)(ε=10_(-4)) and damping values Q_H^(-1)(ε=10^(-3)) of the sample subjected to 3-pass FSP(0.0131 and 0.0496) increased by 33.7% and 157.0%, respectively.展开更多
Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the dampi...Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the damping characteristic of magnesium alloy, and both the MAO and EPD process change the bending stiffness of samples being treated. Damping loss factor(DLF) test and sound transmission experiments were carried out for AZ31 B magnesium alloy with coating fabricated by MAO and EPD processes. The results indicate that DLF is improved in frequency range from 0-850 Hz. Bending stiffness of the samples is improved with MAO and EPD treatment. As a result, the sound transmission loss(LST) is improved in the stiffness control stage of the sound transmission verse frequency curve. To the samples by electrophoresis process, the LST is improved in frequency range from 2500-3200 Hz, because the damping loss factor is improved with EPD process. The results are useful for the surface treatment to enhance the damping loss factor, LST and widespread application of magnesium alloy while improving the corrosion resistance.展开更多
The stress strain curves of two CuZnAl shape memory alloys which have the martensitic transformation temperatures of 50 ℃ and -10 ℃ respectively, were measured by using electronic material tester after treated by di...The stress strain curves of two CuZnAl shape memory alloys which have the martensitic transformation temperatures of 50 ℃ and -10 ℃ respectively, were measured by using electronic material tester after treated by different heat-treatment conditions. The results show that the area enclosed by hysteresis loop of the CuZnAl shape memory alloy in martensitic state is much larger than that of the alloy in austenitic state with super-elasticity at room temperature. Therefore, the former has better vibration attenuation effect. After being oil-quenched, water-quenched, and step-quenched, the CuZnAl alloy takes on more stable shape memory effect,better super-plasticity and superelasticity (pseudoelasticity). A CuZnAl shape memory alloy damper was designed, produced and installed to a 2-layer frame structure. In addition, the vibration experiments were made by dynamic data collecting analysis meter. The velocity of vibration attenuation of frame structure with CuZnAl shape memory alloy damper is much faster than that without it. And with the help of CuZnAl shape memory alloy damper, the attenuation period reduces to 1/10 of the original.展开更多
文摘Strain amplitude dependence of the logarithmic decrement was measured and studied on an AZ61 magnesium alloy at room temperature. Measurements were carried out before and after isochronal thermal treatment step by step with increasing temperature. For all specimens, the strain dependence of the logarithmic decrement exhibits two regions. At lower strains the logarithmic decrement is strain independent and in the higher strain region it depends strongly on strain amplitude. The strain-independent logarithmic decrement is mainly composed of thermoelastic damping and dislocation damping, which can be explained by Granato-Lticke theory. In addition, the strain-independent logarithmic decrement for the specimens annealed at higher temperatures is a little lower than that for as-cast specimen, and it increases with increasing temperature of heat treatment. Microstructure changes due to heat treatment are responsible for changes of the logarithmic decrement.
基金Project(51301077)supported by the National Natural Science Foundation,ChinaProject(BK20130470)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject supported by Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘AZ31 alloy sheet fabricated by rolling was processed by friction stir processing(FSP) with different passes. The effect of FSP on the microstructure and damping capacity of AZ31 alloy sheet was discussed. The fine and equiaxed grains were obtained in the stirred zone(SZ) for FSPed samples from 1 pass to 3 passes with the average grain size of 10.6, 10.4 and 13.6 μm, respectively. The damping peak P_1 was presented on the curves of temperature-dependent damping capacity for FSPed samples. The damping peak P_2 was restrained after FSP and the damping peak P_1 was a relaxation process. The FSPed samples(2-pass FSP and 3-pass FSP) obtained high damping capacity. The best damping valuesQ_0^(-1)(ε=10_(-4)) and damping values Q_H^(-1)(ε=10^(-3)) of the sample subjected to 3-pass FSP(0.0131 and 0.0496) increased by 33.7% and 157.0%, respectively.
基金Project(2011BAE22B05)supported by National Technology R&D Program in the 12th Five year Plan of ChinaProject(2011DFA50900)supported by the Canada-China-USA Collaborative Research&Development ProjectProject(51071121)supported by the National Natural Science Foundation of China
文摘Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the damping characteristic of magnesium alloy, and both the MAO and EPD process change the bending stiffness of samples being treated. Damping loss factor(DLF) test and sound transmission experiments were carried out for AZ31 B magnesium alloy with coating fabricated by MAO and EPD processes. The results indicate that DLF is improved in frequency range from 0-850 Hz. Bending stiffness of the samples is improved with MAO and EPD treatment. As a result, the sound transmission loss(LST) is improved in the stiffness control stage of the sound transmission verse frequency curve. To the samples by electrophoresis process, the LST is improved in frequency range from 2500-3200 Hz, because the damping loss factor is improved with EPD process. The results are useful for the surface treatment to enhance the damping loss factor, LST and widespread application of magnesium alloy while improving the corrosion resistance.
文摘The stress strain curves of two CuZnAl shape memory alloys which have the martensitic transformation temperatures of 50 ℃ and -10 ℃ respectively, were measured by using electronic material tester after treated by different heat-treatment conditions. The results show that the area enclosed by hysteresis loop of the CuZnAl shape memory alloy in martensitic state is much larger than that of the alloy in austenitic state with super-elasticity at room temperature. Therefore, the former has better vibration attenuation effect. After being oil-quenched, water-quenched, and step-quenched, the CuZnAl alloy takes on more stable shape memory effect,better super-plasticity and superelasticity (pseudoelasticity). A CuZnAl shape memory alloy damper was designed, produced and installed to a 2-layer frame structure. In addition, the vibration experiments were made by dynamic data collecting analysis meter. The velocity of vibration attenuation of frame structure with CuZnAl shape memory alloy damper is much faster than that without it. And with the help of CuZnAl shape memory alloy damper, the attenuation period reduces to 1/10 of the original.