A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phospho...A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.展开更多
A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been d...A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
文摘A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.
文摘A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.