Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal...Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).展开更多
Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room t...Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.展开更多
Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin cat...Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.展开更多
基金Project(2018YFC1802204)supported by the National Key R&D Program of ChinaProject(51634010)supported by the Key Project of National Natural Science Foundation of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,China。
文摘Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).
文摘Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.
基金Projects(J21103045,J1210040,J1103312) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Ce O2@Si O2 core-shell nanoparticles were prepared by microemulsion method, and metalloporphyrins were immobilized on the Ce O2@Si O2 core-shell nanoparticles surface via amide bond. The supported metalloporphyrin catalysts were characterized by N2 adsorption-desorption isotherm(BET), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), ultraviolet and visible spectroscopy(UV-Vis), and Fourier transform infrared spectroscopy(FT-IR). The results show that the morphology of Ce O2@Si O2 nanoparticles is core-shell microspheres with about 30 nm in diameter, and metalloporphyrins are immobilized on the Ce O2@Si O2 core-shell nanoparticles via amide bond. Especially, the core-shell structure contains multi Ce O2 core and thin Si O2 shell, which may benefit the synergistic effect between the Ce O2 core and the porphyrin anchored on the very thin Si O2 shell. As a result, this supported metalloporphyrin catalysts present comparably high catalytic activity and stability for oxidation of ethylbenzene with molecular oxygen, namely, ethylbenzene conversion remains around 12% with identical selectivity of about 80% for acetophenone even after six-times reuse of the catalyst.