A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FP...A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FPGA) chip for data and command management. An analog-to-digital-convertor chip is integrated for analog signal acquisition. In order to meet the various requirements of measuring different types of spin noise spectrums, multiple operating modes are designed and realized using the reprogrammable FPGA logic resources. The FFT function is fully managed by the programmable resource inside the FPGA chip. A 1 GSa/s sampling rate and a 100 percent data coverage ratio with non-dead-time are obtained. 30534 FFT spectrums can be acquired per second, and the spectrums can be on-board accumulated and averaged. Digital filters, multi-stage reconfigurable data reconstruction modules, and frequency down conversion modules are also implemented in the FPGA to provide flexible real-time data processing capacity, thus the noise floor and signals aliasing can be suppressed effectively. An efficiency comparison between the FPGA-based FFT spectrum analyzer and the software-based FFT is demonstrated, and the high performance FFT spectrum analyzer has a significant advantage in obtaining high resolution spin noise spectrums with enhanced efficiency.展开更多
A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and abili...A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.展开更多
The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the refle...The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.展开更多
To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas we...To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas were given, and then the fast Fourier transform (FFT) algorithm was used to get the approximate values of option prices. Finally, a numerical example was given to demonstrate the calculate steps to the option price by FFT.展开更多
A fast implementation of the convolution backprojection(CBP)algorithm in spotlight synthetic aperture radar(SAR)is presented based on the fast Fourier transform(FFT).Traditionally,the computation of the 'backpr...A fast implementation of the convolution backprojection(CBP)algorithm in spotlight synthetic aperture radar(SAR)is presented based on the fast Fourier transform(FFT).Traditionally,the computation of the 'backprojection' process is expensive,since resampling in the process is implemented by using the interpolation operation.By analyzing the relative location relationship among different pixels,the algorithm realizes the 'backprojection' using a series of FFTs instead of the interpolation operation.The point target simulation validates that the new algorithm accelerates the CBP algorithm,and the computational rate increases about 85%.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
The control of ultrafast optical field is of great interest in developing ultrafast optics as well as the investigation on vari-ous light-matter interactions with ultrashort pulses.However,conventional spatial encodin...The control of ultrafast optical field is of great interest in developing ultrafast optics as well as the investigation on vari-ous light-matter interactions with ultrashort pulses.However,conventional spatial encoding approaches have only lim-ited steerable targets usually neglecting the temporal effect,thus hindering their broad applications.Here we present a new concept for realizing ultrafast modulation of multi-target focal fields based on the facile combination of time-depend-ent vectorial diffraction theory with fast Fourier transform.This is achieved by focusing femtosecond pulsed light carrying vectorial-vortex by a single objective lens under tight focusing condition.It is uncovered that the ultrafast temporal de-gree of freedom within a configurable temporal duration(~400 fs)plays a pivotal role in determining the rich and exotic features of the focused optical field at one time,namely,bright-dark alternation,periodic rotation,and longitudinal/trans-verse polarization conversion.The underlying control mechanisms have been unveiled.Besides being of academic in-terest in diverse ultrafast spectral regimes,these peculiar behaviors of the space-time evolutionary beams may underpin prolific ultrafast-related applications such as multifunctional integrated optical chip,high-efficiency laser trapping,micro-structure rotation,super-resolution optical microscopy,precise optical measurement,and liveness tracking.展开更多
A novel method based on zoom fast Fourier transform(FFT) is proposed for minimizing the burden processing of cross-ambiguity functions without affecting performance. The low-pass anti-aliasing filter in zoom FFT is ...A novel method based on zoom fast Fourier transform(FFT) is proposed for minimizing the burden processing of cross-ambiguity functions without affecting performance. The low-pass anti-aliasing filter in zoom FFT is realized by using the multistage filtering technique and the weighting processing is employed in the first stage filter to get rid of the redundancy of the computation. In practical systems, the input data is divided into overlapped data frames to avoid loss of detection ability which results in the rapid increase of computational complexity. A segment technique is also proposed in which CAF calculation of overlapped data frames is viewed as slide window FFT to decrease the computational complexity. The experimental results show that compared to the conventional methods, the proposed method can lower computational complexity and is consistent with the real time implementation in existing high-speed digital processors.展开更多
Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in r...Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFF) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.展开更多
The Global Navigation Satellite System(GNSS)has been widely used in various fields.To achieve positioning,the receiver must first lock the satellite signal.This is a complicated and expensive process that consumes a l...The Global Navigation Satellite System(GNSS)has been widely used in various fields.To achieve positioning,the receiver must first lock the satellite signal.This is a complicated and expensive process that consumes a lot of resources of the receiver.For this reason,this paper proposes a new fast acquisition algorithm with High Signal-tonoise ratio(SNR)performance based on sparse fast Fourier transform(HSFFT).The algorithm first replaces the IFFT process of the traditional parallel code phase capture algorithm with inverse sparse fast Fourier transform(ISFFT)with better computing performance,and then uses linear search combined with code phase discrimination to replace the positioning loop and the estimation loop with poor noise immunity in ISFFT.Theoretical analysis and simulation results show that,compared with the existing SFFT parallel code phase capture algorithm,the calculation amount of this algorithm is reduced by 19%,and the SNR performance is improved by about 5dB.Compared with the classic FFT parallel code phase capture algorithm,the calculation amount of the algorithm in this paper is reduced by 43%,and when the capture probability is greater than 95%,the SNR performance of the two is approximately the same.展开更多
The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal...The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.展开更多
A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel spe...A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel speed signal got from fast Fourier transform under various conditions, the high-pass filter is used to deal with original wheel speed signals sampled to get reference noise signal and the original wheel speed signals are used as adaptive filter's desired outputs. The difference between original signals and reference noise signals is used as the error signal for the adaptive FIR filter and also used as the whole adaptive noise cancellation system's final output. This method can obtain the noise signal on-line and is easy to use for. real control system, which is useful to improve the performance of integrate system ABS/ASR.展开更多
This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.T...This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.The project comprises two parts:the development of a system inertia observation technology using a continuous monitoring system to observe inertia and development of an inverter equipped with a function to provide virtual inertia as a countermeasure device.Utilizing both these efforts,the project aims to facilitate the introduction of renewable energy in the future with minimum restrictions.It was confirmed that the trend of inertia observed with the developed method was generally the same as that of the total inertia of synchronous machines observed by an electric utility.The effectiveness of the countermeasure device in reducing the frequency swing during a disturbance was confirmed through evaluation tests.展开更多
The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study wa...The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study was based on Milankovitch's orbital cycle theory. It was found that the CWT scale factors, ‘a,’ of 12, 24 and 60 match the ratios of the periodicities of precession, obliquity and eccentricity very well. Nine intervals of the Permo-carboniferous strata were recognized to have Milankovitch cycles in them. For example, section A of well Q3 has 29 precession cycles, 15 obliquity cycles and 7 short eccentricity cycles. The wavelengths are 2.7, 4.4 and 7.8 m for precession, obliquity and eccentricity, respectively. Important geological parameters such as the stratigraphic completeness and the accumulation rate were also estimated. These results provide basic information for further cyclostratigraphic correlation studies in the area. They are of great significance for the study of ancient and future climate change.展开更多
An application specific integrated circuit (ASIC) design of a 1024 points floating-point fast Fourier transform(FFT) processor is presented. It can satisfy the requirement of high accuracy FFT result in related fields...An application specific integrated circuit (ASIC) design of a 1024 points floating-point fast Fourier transform(FFT) processor is presented. It can satisfy the requirement of high accuracy FFT result in related fields. Several novel design techniques for floating-point adder and multiplier are introduced in detail to enhance the speed of the system. At the same time, the power consumption is decreased. The hardware area is effectively reduced as an improved butterfly processor is developed. There is a substantial increase in the performance of the design since a pipelined architecture is adopted, and very large scale integrated (VLSI) is easy to realize due to the regularity. A result of validation using field programmable gate array (FPGA) is shown at the end. When the system clock is set to 50 MHz, 204.8 μs is needed to complete the operation of FFT computation.展开更多
The traditional orthogonal frequency divi-sion multiplexing(OFDM)transmitter is implemented by inverse fast Fourier transform(IFFT),up-sampling and low pass shaping filter(LPSF),which occupy a large number of hardware...The traditional orthogonal frequency divi-sion multiplexing(OFDM)transmitter is implemented by inverse fast Fourier transform(IFFT),up-sampling and low pass shaping filter(LPSF),which occupy a large number of hardware resources and have long la-tency.To further meet the 5G and future 6G commu-nication requirements,this paper proposes a novel di-rect digital synthesis(DDS)based OFDM transmitter structure that can replace these modules.Due to the strong parallelism of the system structure,it is very suitable for implementation on field programable gate array(FPGA)platform.After making two special sim-plifications to the primary structure,the refined struc-ture becomes very simple compared with the tradi-tional structures.Most attractively,the proposed struc-ture has the following three advantages that i)the data transformation from frequency domain to time domain has zero latency,ii)the transformation length does not need to be an integer power of 2 and iii)the struc-ture does not even need to use any multiplier,thus leading to low implementation complexity and high speed.Comparative experiments are carried out on Intel FPGA platform which show that our DDS based structure can save more than half of the resources com-pared with the traditional structures and can provide the same bit error rate(BER)performance under the condition without using any LPSF.展开更多
This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency ...This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).展开更多
A pilot single-channel Motional Stark Effect(MSE) diagnostic has been developed on EAST since 2015. The dual photo-elastic modulators(PEM) were employed to encode the polarization angle into a time-varying signal....A pilot single-channel Motional Stark Effect(MSE) diagnostic has been developed on EAST since 2015. The dual photo-elastic modulators(PEM) were employed to encode the polarization angle into a time-varying signal. The pitch angle was related to the ratio of modulation amplitude at the second harmonic frequency. A digital harmonic analyzer(DHA) technique was developed for extracting the second harmonic amplitude. The results were validated with a hardware phase lock-in amplifier, and is also consistent with the software dual phase-locking algorithm.展开更多
We propose a new scheme for simulation of a high-order nonlinear Schrodinger equation with a trapped term by using the mid-point rule and Fourier pseudospectral method to approximate time and space derivatives, respec...We propose a new scheme for simulation of a high-order nonlinear Schrodinger equation with a trapped term by using the mid-point rule and Fourier pseudospectral method to approximate time and space derivatives, respectively. The method is proved to be both charge- and energy-conserved. Various numerical experiments for the equation in different cases are conducted. From the numerical evidence, we see the present method provides an accurate solution and conserves the discrete charge and energy invariants to machine accuracy which are consistent with the theoretical analysis.展开更多
A novel architecture for computing the fast Fourier transform ( FFT ) on programmable devices is presented.To improve the system operation speed , a hybrid parallel FFT algorithm is used.Results indicate that the use ...A novel architecture for computing the fast Fourier transform ( FFT ) on programmable devices is presented.To improve the system operation speed , a hybrid parallel FFT algorithm is used.Results indicate that the use of an 8×8parallel structure for realizing the 64-point FFT leads to a 8times higher processing speed compared with its counterparts employing other series of techniques.展开更多
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC07020200)the National Key R&D Program of China(Grant Nos.2018YFA0306600 and 2016YFB0501603)+3 种基金the National Natural Science Foundation of China(Grant No.11927811)the Chinese Academy of Sciences(Grants Nos.GJJSTD20170001 and QYZDY-SSW-SLH004)Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY050000)the Fundamental Research Funds for the Central Universities,China.
文摘A high performance fast-Fourier-transform (FFT) spectrum analyzer, which is developed for measure spin noise spectrums, is presented in this paper. The analyzer is implemented with a field-programmable-gate-arrays (FPGA) chip for data and command management. An analog-to-digital-convertor chip is integrated for analog signal acquisition. In order to meet the various requirements of measuring different types of spin noise spectrums, multiple operating modes are designed and realized using the reprogrammable FPGA logic resources. The FFT function is fully managed by the programmable resource inside the FPGA chip. A 1 GSa/s sampling rate and a 100 percent data coverage ratio with non-dead-time are obtained. 30534 FFT spectrums can be acquired per second, and the spectrums can be on-board accumulated and averaged. Digital filters, multi-stage reconfigurable data reconstruction modules, and frequency down conversion modules are also implemented in the FPGA to provide flexible real-time data processing capacity, thus the noise floor and signals aliasing can be suppressed effectively. An efficiency comparison between the FPGA-based FFT spectrum analyzer and the software-based FFT is demonstrated, and the high performance FFT spectrum analyzer has a significant advantage in obtaining high resolution spin noise spectrums with enhanced efficiency.
文摘A sapphire fibre thermal probe with Cr^3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.
基金Supported by the National Natural Science Foundation of China under Grant No 11604115the Educational Commission of Jiangsu Province of China under Grant No 17KJA460004the Huaian Science and Technology Funds under Grant No HAC201701
文摘The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.
基金Foundation item The National Natural Science Foundationof China (No10571065)
文摘To study the approximation of foreign currency option prices when the underlying assets' price dynamics are described by exponential Lévy processes, the convolution representations for option pricing formulas were given, and then the fast Fourier transform (FFT) algorithm was used to get the approximate values of option prices. Finally, a numerical example was given to demonstrate the calculate steps to the option price by FFT.
基金Supported by the National Natural Science Foundation of China(61071165)the Aeronautical Science Foundation of China(20080152004)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(20070280531)the Program for New Century Excellent Talents in University(NCET-09-0069)~~
文摘A fast implementation of the convolution backprojection(CBP)algorithm in spotlight synthetic aperture radar(SAR)is presented based on the fast Fourier transform(FFT).Traditionally,the computation of the 'backprojection' process is expensive,since resampling in the process is implemented by using the interpolation operation.By analyzing the relative location relationship among different pixels,the algorithm realizes the 'backprojection' using a series of FFTs instead of the interpolation operation.The point target simulation validates that the new algorithm accelerates the CBP algorithm,and the computational rate increases about 85%.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
基金supported by the National Natural Science Foundation of China (Nos. 11974258, 11604236, 61575139)Key Research and Development (R&D) Projects of Shanxi Province (201903D121127)+2 种基金Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0151)the Natural Sciences Foundation in Shanxi Province (201901D111117)the financial support from the Australian Research Council (Australian Research Council (DP190103186, IC180100005)
文摘The control of ultrafast optical field is of great interest in developing ultrafast optics as well as the investigation on vari-ous light-matter interactions with ultrashort pulses.However,conventional spatial encoding approaches have only lim-ited steerable targets usually neglecting the temporal effect,thus hindering their broad applications.Here we present a new concept for realizing ultrafast modulation of multi-target focal fields based on the facile combination of time-depend-ent vectorial diffraction theory with fast Fourier transform.This is achieved by focusing femtosecond pulsed light carrying vectorial-vortex by a single objective lens under tight focusing condition.It is uncovered that the ultrafast temporal de-gree of freedom within a configurable temporal duration(~400 fs)plays a pivotal role in determining the rich and exotic features of the focused optical field at one time,namely,bright-dark alternation,periodic rotation,and longitudinal/trans-verse polarization conversion.The underlying control mechanisms have been unveiled.Besides being of academic in-terest in diverse ultrafast spectral regimes,these peculiar behaviors of the space-time evolutionary beams may underpin prolific ultrafast-related applications such as multifunctional integrated optical chip,high-efficiency laser trapping,micro-structure rotation,super-resolution optical microscopy,precise optical measurement,and liveness tracking.
基金Sponsored by the Excellent Young Scholar Research Fund of Beijing Institute of Technology (000Y01-5)BIT(UBF 200501F4208.4)
文摘A novel method based on zoom fast Fourier transform(FFT) is proposed for minimizing the burden processing of cross-ambiguity functions without affecting performance. The low-pass anti-aliasing filter in zoom FFT is realized by using the multistage filtering technique and the weighting processing is employed in the first stage filter to get rid of the redundancy of the computation. In practical systems, the input data is divided into overlapped data frames to avoid loss of detection ability which results in the rapid increase of computational complexity. A segment technique is also proposed in which CAF calculation of overlapped data frames is viewed as slide window FFT to decrease the computational complexity. The experimental results show that compared to the conventional methods, the proposed method can lower computational complexity and is consistent with the real time implementation in existing high-speed digital processors.
基金Projected supported by the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natura Science Foundation of China(Grant No.61372172)
文摘Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFF) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.
文摘The Global Navigation Satellite System(GNSS)has been widely used in various fields.To achieve positioning,the receiver must first lock the satellite signal.This is a complicated and expensive process that consumes a lot of resources of the receiver.For this reason,this paper proposes a new fast acquisition algorithm with High Signal-tonoise ratio(SNR)performance based on sparse fast Fourier transform(HSFFT).The algorithm first replaces the IFFT process of the traditional parallel code phase capture algorithm with inverse sparse fast Fourier transform(ISFFT)with better computing performance,and then uses linear search combined with code phase discrimination to replace the positioning loop and the estimation loop with poor noise immunity in ISFFT.Theoretical analysis and simulation results show that,compared with the existing SFFT parallel code phase capture algorithm,the calculation amount of this algorithm is reduced by 19%,and the SNR performance is improved by about 5dB.Compared with the classic FFT parallel code phase capture algorithm,the calculation amount of the algorithm in this paper is reduced by 43%,and when the capture probability is greater than 95%,the SNR performance of the two is approximately the same.
文摘The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures.
基金Sponsored bythe National Natural Science Fundation of China (50122148)
文摘A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel speed signal got from fast Fourier transform under various conditions, the high-pass filter is used to deal with original wheel speed signals sampled to get reference noise signal and the original wheel speed signals are used as adaptive filter's desired outputs. The difference between original signals and reference noise signals is used as the error signal for the adaptive FIR filter and also used as the whole adaptive noise cancellation system's final output. This method can obtain the noise signal on-line and is easy to use for. real control system, which is useful to improve the performance of integrate system ABS/ASR.
基金based on the results obtained from a project(JPNP19002)commissioned by the New Energy and Industrial Technology Development Organization(NEDO)supported by the TEPCO Power Grid,Inc.+9 种基金Tohoku Electric Power Network Co.,Inc.Chubu Electric Power Co.,Inc.Chubu Electric Power Grid Co.,Inc.Kansai Transmission and Distribution,Inc.Chugoku Electric Power Transmission and Distribution Co.,Inc.Kyushu Electric Power Co.,Inc.Kyushu Electric Power Transmission and Distribution Co.,Inc.Takaoka Toko Co.,Ltd.Tokushima UniversityOsaka Prefectural University。
文摘This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.The project comprises two parts:the development of a system inertia observation technology using a continuous monitoring system to observe inertia and development of an inverter equipped with a function to provide virtual inertia as a countermeasure device.Utilizing both these efforts,the project aims to facilitate the introduction of renewable energy in the future with minimum restrictions.It was confirmed that the trend of inertia observed with the developed method was generally the same as that of the total inertia of synchronous machines observed by an electric utility.The effectiveness of the countermeasure device in reducing the frequency swing during a disturbance was confirmed through evaluation tests.
基金supported by the Project Sponsored by the Scientific Research Foundation for the Re-turned Overseas Chinese Scholars, State Education Ministry (2006331) National Basic Research Program of China (2003CB214608)
文摘The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study was based on Milankovitch's orbital cycle theory. It was found that the CWT scale factors, ‘a,’ of 12, 24 and 60 match the ratios of the periodicities of precession, obliquity and eccentricity very well. Nine intervals of the Permo-carboniferous strata were recognized to have Milankovitch cycles in them. For example, section A of well Q3 has 29 precession cycles, 15 obliquity cycles and 7 short eccentricity cycles. The wavelengths are 2.7, 4.4 and 7.8 m for precession, obliquity and eccentricity, respectively. Important geological parameters such as the stratigraphic completeness and the accumulation rate were also estimated. These results provide basic information for further cyclostratigraphic correlation studies in the area. They are of great significance for the study of ancient and future climate change.
文摘An application specific integrated circuit (ASIC) design of a 1024 points floating-point fast Fourier transform(FFT) processor is presented. It can satisfy the requirement of high accuracy FFT result in related fields. Several novel design techniques for floating-point adder and multiplier are introduced in detail to enhance the speed of the system. At the same time, the power consumption is decreased. The hardware area is effectively reduced as an improved butterfly processor is developed. There is a substantial increase in the performance of the design since a pipelined architecture is adopted, and very large scale integrated (VLSI) is easy to realize due to the regularity. A result of validation using field programmable gate array (FPGA) is shown at the end. When the system clock is set to 50 MHz, 204.8 μs is needed to complete the operation of FFT computation.
基金the Natural Science Foun-dation of Hubei Province under Grant 2019CFB593National Natural Science Foundation of China un-der Grant 61961016Starting Fund for Doc-toral Research in Hubei Minzu University under Grant MY2018B018.
文摘The traditional orthogonal frequency divi-sion multiplexing(OFDM)transmitter is implemented by inverse fast Fourier transform(IFFT),up-sampling and low pass shaping filter(LPSF),which occupy a large number of hardware resources and have long la-tency.To further meet the 5G and future 6G commu-nication requirements,this paper proposes a novel di-rect digital synthesis(DDS)based OFDM transmitter structure that can replace these modules.Due to the strong parallelism of the system structure,it is very suitable for implementation on field programable gate array(FPGA)platform.After making two special sim-plifications to the primary structure,the refined struc-ture becomes very simple compared with the tradi-tional structures.Most attractively,the proposed struc-ture has the following three advantages that i)the data transformation from frequency domain to time domain has zero latency,ii)the transformation length does not need to be an integer power of 2 and iii)the struc-ture does not even need to use any multiplier,thus leading to low implementation complexity and high speed.Comparative experiments are carried out on Intel FPGA platform which show that our DDS based structure can save more than half of the resources com-pared with the traditional structures and can provide the same bit error rate(BER)performance under the condition without using any LPSF.
文摘This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).
基金supported by the National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2013GB112004 and 2015GB103003National Natural Science Foundation of China under Grant Nos. 11605242, 11535013 and 11405212
文摘A pilot single-channel Motional Stark Effect(MSE) diagnostic has been developed on EAST since 2015. The dual photo-elastic modulators(PEM) were employed to encode the polarization angle into a time-varying signal. The pitch angle was related to the ratio of modulation amplitude at the second harmonic frequency. A digital harmonic analyzer(DHA) technique was developed for extracting the second harmonic amplitude. The results were validated with a hardware phase lock-in amplifier, and is also consistent with the software dual phase-locking algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11201169 and 11271195)the Qing Lan Project of Jiangsu Province,China
文摘We propose a new scheme for simulation of a high-order nonlinear Schrodinger equation with a trapped term by using the mid-point rule and Fourier pseudospectral method to approximate time and space derivatives, respectively. The method is proved to be both charge- and energy-conserved. Various numerical experiments for the equation in different cases are conducted. From the numerical evidence, we see the present method provides an accurate solution and conserves the discrete charge and energy invariants to machine accuracy which are consistent with the theoretical analysis.
基金Supported by the National Natural Science Foundation of China(60801052)the Aeronautical Science Foundation of China(2009ZC52036)+1 种基金the Ph.D.Programs Foundation of China's Ministry of Education(200802871056)the Nanjing University of Aeronautics & Astronautics Research Funding(NS2010109,NS2010114)
文摘A novel architecture for computing the fast Fourier transform ( FFT ) on programmable devices is presented.To improve the system operation speed , a hybrid parallel FFT algorithm is used.Results indicate that the use of an 8×8parallel structure for realizing the 64-point FFT leads to a 8times higher processing speed compared with its counterparts employing other series of techniques.