In order to improve the sensitivity of the Compass B1C signal acquisition for the receiver,the principle of constant false alarm rate(CFAR)is applied for the B1C pilot channel acquisition to realize the dynamic adjust...In order to improve the sensitivity of the Compass B1C signal acquisition for the receiver,the principle of constant false alarm rate(CFAR)is applied for the B1C pilot channel acquisition to realize the dynamic adjustment of the threshold of acquisition against the carrier to noise ratio.The non-coherent data/pilot combined acquisition algorithm for B1C signal is analyzed to make full use of the power of the B1C signal under the condition of low carrier to noise ratio.On this basis,to improve the acquisition sensitivity of the receiver,the principle of constant false alarm probability is applied for the non-coherent data/pilot combined acquisition algorithm.Theoretical analysis and simulations show that the non-coherent data/pilot combined acquisition algorithm with CFAR improves the B1C signal acquisition sensitivity of the receiver significantly,and achieves a better Receiver Operating Characteristic compared with the traditional acquisition algorithms.展开更多
Steganalysis attack is to statistically estimate the embedded watermark in the watermarked multimedia,and the estimated watermark may be destroyed by the attacker.The existing methods of false negative probability,how...Steganalysis attack is to statistically estimate the embedded watermark in the watermarked multimedia,and the estimated watermark may be destroyed by the attacker.The existing methods of false negative probability,however,do not consider the influence of steganalysis attack.This paper proposed the game theory based false negative probability to estimate the impacts of steganalysis attack,as well as unintentional attack.Specifically,game theory was used to model the collision between the embedment and steganalysis attack,and derive the optimal building embedding/attacking strategy.Such optimal playing strategies devote to calculating the attacker destructed watermark,used for calculation of the game theory based false negative probability.The experimental results show that watermark detection reliability measured using our proposed method,in comparison,can better reflect the real scenario in which the embedded watermark undergoes unintentional attack and the attacker using steganalysis attack.This paper provides a foundation for investigating countermeasures of digital watermarking community against steganalysis attack.展开更多
Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the...Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.展开更多
The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railw...The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railway security is paramount.The current laser monitoring technologies suffer from high false alarm rates and unreliable intrusion identification.This study addresses these issues by investigating high-resolution laser monitoring technology for railway obstacles,focusing on key parameters such as monitoring range and resolution.We propose an enhanced non-uniform laser scanning method,developing a laser monitoring system that reduces the obstacle false alarm rate to 2.00%,significantly lower than the 20%standard(TJ/GW135-2015).This rate is the best record for laser monitoring systems on China Railway.Our system operates seamlessly in all weather conditions,providing superior accuracy,resolution,and identification efficiency.It is the only 3D LiDAR system certified by the China State Railway Group Co.,Ltd.(Certificate No.[2023]008).Over three years,our system has been deployed at numerous points along various lines managed by the China State Railway Group,accumulating a dataset of 300,000 observations.This extensive deployment has significantly enhanced railway safety.The development and implementation of our railway laser monitoring system represent a substantial advancement in railway safety technology.Its low false alarm rate(2.00%),high accuracy(20 cm×20 cm×20 cm),and robust performance in diverse conditions underscore its potential for widespread adoption,promising to enhance railway safety in China and internationally.展开更多
基金supported by the Joint Funds of the Ministry of Education of China(No.6141A02022383)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.20101195611)
文摘In order to improve the sensitivity of the Compass B1C signal acquisition for the receiver,the principle of constant false alarm rate(CFAR)is applied for the B1C pilot channel acquisition to realize the dynamic adjustment of the threshold of acquisition against the carrier to noise ratio.The non-coherent data/pilot combined acquisition algorithm for B1C signal is analyzed to make full use of the power of the B1C signal under the condition of low carrier to noise ratio.On this basis,to improve the acquisition sensitivity of the receiver,the principle of constant false alarm probability is applied for the non-coherent data/pilot combined acquisition algorithm.Theoretical analysis and simulations show that the non-coherent data/pilot combined acquisition algorithm with CFAR improves the B1C signal acquisition sensitivity of the receiver significantly,and achieves a better Receiver Operating Characteristic compared with the traditional acquisition algorithms.
基金supported by the National Natural Science Foundation of China(No. 71020107027) in part by the Doctoral Startup Fundation of Xinjiang University of Finace and Economics
文摘Steganalysis attack is to statistically estimate the embedded watermark in the watermarked multimedia,and the estimated watermark may be destroyed by the attacker.The existing methods of false negative probability,however,do not consider the influence of steganalysis attack.This paper proposed the game theory based false negative probability to estimate the impacts of steganalysis attack,as well as unintentional attack.Specifically,game theory was used to model the collision between the embedment and steganalysis attack,and derive the optimal building embedding/attacking strategy.Such optimal playing strategies devote to calculating the attacker destructed watermark,used for calculation of the game theory based false negative probability.The experimental results show that watermark detection reliability measured using our proposed method,in comparison,can better reflect the real scenario in which the embedded watermark undergoes unintentional attack and the attacker using steganalysis attack.This paper provides a foundation for investigating countermeasures of digital watermarking community against steganalysis attack.
基金supported by National Science Foundation of China under Grant No.61401205
文摘Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.
基金financially supported by the National Natural Science Foundation of China(Nos.62275244,62375258,62225507,U2033211,62175230,and 62175232)the CAS Project for Young Scientists in Basic Research(No.YSBR-065)+2 种基金Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20200001)National Key R&D Program of China(No.2022YFB3607800,No.2022YFB3605800,and No.2022YFB4601501)Key Program of the Chinese Academy of Sciences(ZDBS-ZRKJZ-TLC018)。
文摘The intrusion of obstacles onto railway tracks presents a significant threat to train safety,characterized by sudden and unpredictable occurrences.With China leading the world in high-speed rail mileage,ensuring railway security is paramount.The current laser monitoring technologies suffer from high false alarm rates and unreliable intrusion identification.This study addresses these issues by investigating high-resolution laser monitoring technology for railway obstacles,focusing on key parameters such as monitoring range and resolution.We propose an enhanced non-uniform laser scanning method,developing a laser monitoring system that reduces the obstacle false alarm rate to 2.00%,significantly lower than the 20%standard(TJ/GW135-2015).This rate is the best record for laser monitoring systems on China Railway.Our system operates seamlessly in all weather conditions,providing superior accuracy,resolution,and identification efficiency.It is the only 3D LiDAR system certified by the China State Railway Group Co.,Ltd.(Certificate No.[2023]008).Over three years,our system has been deployed at numerous points along various lines managed by the China State Railway Group,accumulating a dataset of 300,000 observations.This extensive deployment has significantly enhanced railway safety.The development and implementation of our railway laser monitoring system represent a substantial advancement in railway safety technology.Its low false alarm rate(2.00%),high accuracy(20 cm×20 cm×20 cm),and robust performance in diverse conditions underscore its potential for widespread adoption,promising to enhance railway safety in China and internationally.