For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock disp...For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock displacement, plastic zone and stress distribution in rectangular, circle arch and arch wall sections, respectively. Based on the mining depth and thickness of the coal seam, roadway support technology solutions with different buried depth and thickness of coal seam are proposed. Support schemes are amended and optimized in time through monitoring data of the deformation of roadway, roof separation, l-beam bracket, bolt and anchor cable force to ensure the long-term stability and security of the roadway surrounding rock and support structure. The monitoring results show that mine roadway support schemes for different buried depth and section can be adapted to the characteristics of ground pressure and deformation of the surrounding rock in different depth well, effectively control the roadway surrounding rock deformation and the floor heave and guarantee the safety of construction and basic stability of surrounding rock and support structure.展开更多
To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng, we studied the regular development of stress and plastic zones and characteristics of deformation of rock s...To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng, we studied the regular development of stress and plastic zones and characteristics of deformation of rock surrounding roadway groups after a period of roadway driving, mining one side as well as mining both sides, we used FLAC 3D for our numerical and theoretical analyses. Field test were carried out, where we revealed the deformation mechanism of roadways and its coal pillars in complex stress conditions. We proposed a roadway stability control technology using backwall grouting with high-water rapid hardening material and combined support with bolt and cable anchoring after mining both sides. Our field practices showed that deformation of rock surrounding roadways can be controlled with this technology.展开更多
基金Financial support for this work, provided by the Major Program of the National Natural Science Foundation of China (Nos. 51174196 and 51204168)the Program for New Century Excellent Talents in University by Ministry of Education of China (No. NCET-07-0519)
文摘For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock displacement, plastic zone and stress distribution in rectangular, circle arch and arch wall sections, respectively. Based on the mining depth and thickness of the coal seam, roadway support technology solutions with different buried depth and thickness of coal seam are proposed. Support schemes are amended and optimized in time through monitoring data of the deformation of roadway, roof separation, l-beam bracket, bolt and anchor cable force to ensure the long-term stability and security of the roadway surrounding rock and support structure. The monitoring results show that mine roadway support schemes for different buried depth and section can be adapted to the characteristics of ground pressure and deformation of the surrounding rock in different depth well, effectively control the roadway surrounding rock deformation and the floor heave and guarantee the safety of construction and basic stability of surrounding rock and support structure.
基金Financial support for this work,provided by the National Natural Science Foundation of China (No.50774077)the Research Foundation of the State Key Laboratory of Coal Resources and Mine Safety (No.SKLCRSM08X04)+3 种基金the National Basic Research Program of China (No.2007CB209401)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No.200760)the Program for New Century Excellent Talents in University (No.NCET-06-0475)the Science Foundation for Youth of China University of Mining and Technology (No.2008A002)
文摘To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng, we studied the regular development of stress and plastic zones and characteristics of deformation of rock surrounding roadway groups after a period of roadway driving, mining one side as well as mining both sides, we used FLAC 3D for our numerical and theoretical analyses. Field test were carried out, where we revealed the deformation mechanism of roadways and its coal pillars in complex stress conditions. We proposed a roadway stability control technology using backwall grouting with high-water rapid hardening material and combined support with bolt and cable anchoring after mining both sides. Our field practices showed that deformation of rock surrounding roadways can be controlled with this technology.