In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the m...In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the mirror image theory.Combined with the distribution of the underwater electric potential measured in laboratory,an electric dipole model for physical scale of ship was established and the distribution characteristics of an actual ship' s corrosion related magnetic field were obtained.Based on established models,theoretical analysis and calculation were made to catch out the distribution characteristics of static magnetic field related with corrosion and anticorrosion,which can not be measured directly in seawater.The results show that the static magnetic field related with corrosion and anticorrosion is a kind of noteworthy obstacle signal for degaussed ships.展开更多
A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the...A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the structural coefficient of the effective electric field.Furthermore,the optimization of the Skanavi model is demonstrated and the ferroelectric phase transition of BaTiO_(3)crystals is revealed by calculating the optical and static permittivities of BaTiO_(3),CaTiO_(3),and SrTiO_(3)crystals and the structure coefficients of the effective electric field of BT crystals after Ti4+displacement.This research compensates for the deficiencies of the traditional Skanavi model and refines the theoretical framework for analyzing dielectric properties in high permittivity materials.展开更多
Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other p...Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.展开更多
The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling syst...The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling system is implemented. The mathematic model is established for thermal current field computation, simulation and analysis in the powertrain cabin. The three-dimensional structure of the powertrain cabin is optimized. The validity of the cooling system design is proved. The foundation for optimizing the whole electric transmission system configuration is laid.展开更多
In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mob...In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, A1GaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco-Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc.展开更多
We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory.We compare the model with the thermodynamically inconsistent ...We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory.We compare the model with the thermodynamically inconsistent one previously used for the coupled system to highlight their differences in describing transient dynamics.展开更多
A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma.An SDBD plasma reactor based on the double spiral structure is introduced in this ...A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma.An SDBD plasma reactor based on the double spiral structure is introduced in this paper.To study the discharge mechanism of SDBD,an equivalent circuit model was proposed based on the analysis of the micro-discharge process of SDBD.Matlab/Simulink is used to simulate and compare the voltage-current waves,Lissajous and discharge power with the experimental results.The consistency of the results verifies the validity of the SDBD equivalent circuit model.Maxwell software based on the finite elements method is used to analyze the electrostatic field distribution of the device,which can better explain the relationship between the discharge image and the electrostatic field distribution.The combination of equivalent circuit simulation and electrostatic field simulation can provide better guidance for optimizing a plasma generator.Finally,the device is used to treat PM2.5 and formaldehyde.The test results show that the degradation rate of PM2.5 can reach 78% after 24 min,and formaldehyde is about 31.5% after 10m in of plasma treatment.展开更多
A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap for...A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap formed by plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D~ simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.展开更多
The PARASOL code and the simulation by using PARASOL are introduced briefly. The PARASOL code with particle-in-cell (PIC) method and binary collision model was developed in JAERI and JAEA. Simulations using PARASOL ...The PARASOL code and the simulation by using PARASOL are introduced briefly. The PARASOL code with particle-in-cell (PIC) method and binary collision model was developed in JAERI and JAEA. Simulations using PARASOL code were carried out in order to investigate the power and particle control with diveror system in fusion reactors. The one-dimensional (1D) version of PARASOL was adopted to investigate the Bohm criterion, the supersonic flow, the SOL heat conduction, and so on. The heat propagation due to edge localized mode (ELM) was studied with the 1D-dynamic PARASOL. The two-dimensional version of PARASOL for the whole tokamak plasma including scrape-off-layer (SOL)-divertor region was useful for simulating the SOL flow pattern, the electric field formation etc. Based on PARASOL simulation results, improved physics modeling for the fluid simulation was built up.展开更多
The field emission (FE) characteristics of nano-structured carbon films (NSCFs) are investigated. The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably ...The field emission (FE) characteristics of nano-structured carbon films (NSCFs) are investigated. The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably explained by the traditional Fowler-Nordheim (F-N) theory. A three-region E model and the curve-fitting method are utilized for discussing the FE characteristics of NSCFs. In the low, high, and middle E regions, the FE mechanism is reasonably explained by a modified F-N model, a corrected space-charge-limited-current (SCLC) model and the joint model of F N and SCLC mechanism, respectively. Moreover, the measured FE data accord well with the results from our corrected theoretical model.展开更多
The air breakdown is easily caused by the high-power microwave, which can have two mutually orthogonal and heterophase electric field components. For this case, the electron momentum conservation equation is employed ...The air breakdown is easily caused by the high-power microwave, which can have two mutually orthogonal and heterophase electric field components. For this case, the electron momentum conservation equation is employed to deduce the electric field power and effective electric field for heating electrons. Then the formula of the electric field power is introduced into the global model to simulate the air breakdown. The breakdown prediction from the global model agrees well with the experimental data. Simulation results show that the electron temperature is sensitive to the phase difference between the two electron field components, while the latter can affect obviously the growth of the electron density at low electron temperature amplitudes. The ionization of nitrogen and oxygen induces the growth of electron density, and the density loss due to the dissociative attachment and dissociative recombination is obvious only at low electron temperatures.展开更多
In this paper, we propose a two-dimensional(2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors(HEMTs). The model is constructed by t...In this paper, we propose a two-dimensional(2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors(HEMTs). The model is constructed by two-dimensional Poisson's equation with appropriate boundary conditions. In the RESURF AlGaN/GaN HEMTs, we utilize the RESURF effect generated by doped negative charge in the AlGaN layer and introduce new electric field peaks in the device channels,thus, homogenizing the distribution of electric field in channel and improving the breakdown voltage of the device. In order to reveal the influence of doped negative charge on the electric field distribution, we demonstrate in detail the influences of the charge doping density and doping position on the potential and electric field distribution of the RESURF AlGaN/GaN HEMTs with double low density drain(LDD). The validity of the model is verified by comparing the results obtained from the analytical model with the simulation results from the ISE software. This analysis method gives a physical insight into the mechanism of the AlGaN/GaN HEMTs and provides reference to modeling other AlGaN/GaN HEMTs device.展开更多
Measurements of energetic particles obtained by the two geosynchronous satellites (1991-080 and LANL-97A) are performed to investigate the plasma injection boundary and source region during the magnetospheric substo...Measurements of energetic particles obtained by the two geosynchronous satellites (1991-080 and LANL-97A) are performed to investigate the plasma injection boundary and source region during the magnetospheric substorms. The measurement method is developed to allow remote sensing of the plasma injection time and the radial distance of injection boundaries by using measured energy dispersion and modelling particle drifts within the Volland-Stern electric field and the dipole magnetic field model. The radial distance of the injection boundary deduced from a dispersion event observed by the LANL-97A satellite on 14 June 1998 is 7.1RE, and the injection time agrees well with the substorm onset time identified by the Polar Ultraviolet Imager. The method has been applied to an event happened at 22.9 UT on 11 March 1998, when both the satellites (1991-080 and LANL-97A) observed the dispersionless character. The results indicate that the radial distance of injection source locates at 8.1RE at magnetotail, and particles move earthward from magnetotail into inner magnetosphere at 22.5 UT.展开更多
基金Sponsored by National Defense Pre-research Foundation(51444070105JB11)
文摘In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the mirror image theory.Combined with the distribution of the underwater electric potential measured in laboratory,an electric dipole model for physical scale of ship was established and the distribution characteristics of an actual ship' s corrosion related magnetic field were obtained.Based on established models,theoretical analysis and calculation were made to catch out the distribution characteristics of static magnetic field related with corrosion and anticorrosion,which can not be measured directly in seawater.The results show that the static magnetic field related with corrosion and anticorrosion is a kind of noteworthy obstacle signal for degaussed ships.
基金Project supported by the National Natural Science Foundation of China(Grant No.51277138)the Natural Science Basic Research Program of Shaanxi Province of China(Grant No.2021JM-442)the Fund from the Shaanxi Provincial Science and Technology Department for Qin Chuangyuan Scientist+Engineer Team(Grant No.2024QCY-KXJ-194)。
文摘A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the structural coefficient of the effective electric field.Furthermore,the optimization of the Skanavi model is demonstrated and the ferroelectric phase transition of BaTiO_(3)crystals is revealed by calculating the optical and static permittivities of BaTiO_(3),CaTiO_(3),and SrTiO_(3)crystals and the structure coefficients of the effective electric field of BT crystals after Ti4+displacement.This research compensates for the deficiencies of the traditional Skanavi model and refines the theoretical framework for analyzing dielectric properties in high permittivity materials.
基金Project supported by the National Natural Science Foundation of China(Grand Nos.11147158 and 11264020)the Natural Science Foundation of Jiangxi Province,China(Grand No.2010GQW0031)the Scientific Research Program of the Education Bureau of Jiangxi Province,China(Grand No.GJJ12483)
文摘Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.
文摘The electric transmission system congfiguration-2 is one of the main electric drives for tracked vehicles. The geometrical model for the power-train cabin is established and the preliminary design for its cooling system is implemented. The mathematic model is established for thermal current field computation, simulation and analysis in the powertrain cabin. The three-dimensional structure of the powertrain cabin is optimized. The validity of the cooling system design is proved. The foundation for optimizing the whole electric transmission system configuration is laid.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204085 and 61334002)the Fundamental Research Funds for the Central Universities,China(Grant No.K5051225013)
文摘In this paper, we present a two-dimensional (2D) fully analytical model with consideration of polarization effect for the channel potential and electric field distributions of the gate field-plated high electron mobility transistor (FP-HEMT) on the basis of 2D Poisson's solution. The dependences of the channel potential and electric field distributions on drain bias, polarization charge density, FP structure parameters, A1GaN/GaN material parameters, etc. are investigated. A simple and convenient approach to designing high breakdown voltage FP-HEMTs is also proposed. The validity of this model is demonstrated by comparison with the numerical simulations with Silvaco-Atlas. The method in this paper can be extended to the development of other analytical models for different device structures, such as MIS-HEMTs, multiple-FP HETMs, slant-FP HEMTs, etc.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11971051 and U1930402)partially supported by National Science Foundation grants(award DMS-1815921,1954532 and OIA-1655740)a GEAR award from SC EPSCoR/IDeA Program。
文摘We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory.We compare the model with the thermodynamically inconsistent one previously used for the coupled system to highlight their differences in describing transient dynamics.
基金National Natural Science Foundation of China (No. 11575066).
文摘A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma.An SDBD plasma reactor based on the double spiral structure is introduced in this paper.To study the discharge mechanism of SDBD,an equivalent circuit model was proposed based on the analysis of the micro-discharge process of SDBD.Matlab/Simulink is used to simulate and compare the voltage-current waves,Lissajous and discharge power with the experimental results.The consistency of the results verifies the validity of the SDBD equivalent circuit model.Maxwell software based on the finite elements method is used to analyze the electrostatic field distribution of the device,which can better explain the relationship between the discharge image and the electrostatic field distribution.The combination of equivalent circuit simulation and electrostatic field simulation can provide better guidance for optimizing a plasma generator.Finally,the device is used to treat PM2.5 and formaldehyde.The test results show that the degradation rate of PM2.5 can reach 78% after 24 min,and formaldehyde is about 31.5% after 10m in of plasma treatment.
文摘A new contact glow discharge electrode employed in this study. Because of the strong field the electrode and the water surface, glow discharge on the surface of water was designed and strength in the small air gap formed by plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D~ simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.
文摘The PARASOL code and the simulation by using PARASOL are introduced briefly. The PARASOL code with particle-in-cell (PIC) method and binary collision model was developed in JAERI and JAEA. Simulations using PARASOL code were carried out in order to investigate the power and particle control with diveror system in fusion reactors. The one-dimensional (1D) version of PARASOL was adopted to investigate the Bohm criterion, the supersonic flow, the SOL heat conduction, and so on. The heat propagation due to edge localized mode (ELM) was studied with the 1D-dynamic PARASOL. The two-dimensional version of PARASOL for the whole tokamak plasma including scrape-off-layer (SOL)-divertor region was useful for simulating the SOL flow pattern, the electric field formation etc. Based on PARASOL simulation results, improved physics modeling for the fluid simulation was built up.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11164031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China (Grant No. (2009)1341)
文摘The field emission (FE) characteristics of nano-structured carbon films (NSCFs) are investigated. The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably explained by the traditional Fowler-Nordheim (F-N) theory. A three-region E model and the curve-fitting method are utilized for discussing the FE characteristics of NSCFs. In the low, high, and middle E regions, the FE mechanism is reasonably explained by a modified F-N model, a corrected space-charge-limited-current (SCLC) model and the joint model of F N and SCLC mechanism, respectively. Moreover, the measured FE data accord well with the results from our corrected theoretical model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61501358,61431010,and 61627901)the Fundamental Research Funds for the Central Universities,China
文摘The air breakdown is easily caused by the high-power microwave, which can have two mutually orthogonal and heterophase electric field components. For this case, the electron momentum conservation equation is employed to deduce the electric field power and effective electric field for heating electrons. Then the formula of the electric field power is introduced into the global model to simulate the air breakdown. The breakdown prediction from the global model agrees well with the experimental data. Simulation results show that the electron temperature is sensitive to the phase difference between the two electron field components, while the latter can affect obviously the growth of the electron density at low electron temperature amplitudes. The ionization of nitrogen and oxygen induces the growth of electron density, and the density loss due to the dissociative attachment and dissociative recombination is obvious only at low electron temperatures.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB351906)the National Natural Science Foundation of China(Grant No.61774114)+1 种基金the Key Program of the National Natural Science Foundation of China(Grant No.61334002)the 111 Project,China(Grant No.B12026)
文摘In this paper, we propose a two-dimensional(2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors(HEMTs). The model is constructed by two-dimensional Poisson's equation with appropriate boundary conditions. In the RESURF AlGaN/GaN HEMTs, we utilize the RESURF effect generated by doped negative charge in the AlGaN layer and introduce new electric field peaks in the device channels,thus, homogenizing the distribution of electric field in channel and improving the breakdown voltage of the device. In order to reveal the influence of doped negative charge on the electric field distribution, we demonstrate in detail the influences of the charge doping density and doping position on the potential and electric field distribution of the RESURF AlGaN/GaN HEMTs with double low density drain(LDD). The validity of the model is verified by comparing the results obtained from the analytical model with the simulation results from the ISE software. This analysis method gives a physical insight into the mechanism of the AlGaN/GaN HEMTs and provides reference to modeling other AlGaN/GaN HEMTs device.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40390150, 40674094 and 40523006, and the National Basic Research Programme of China under Grant No 2006CB806305.
文摘Measurements of energetic particles obtained by the two geosynchronous satellites (1991-080 and LANL-97A) are performed to investigate the plasma injection boundary and source region during the magnetospheric substorms. The measurement method is developed to allow remote sensing of the plasma injection time and the radial distance of injection boundaries by using measured energy dispersion and modelling particle drifts within the Volland-Stern electric field and the dipole magnetic field model. The radial distance of the injection boundary deduced from a dispersion event observed by the LANL-97A satellite on 14 June 1998 is 7.1RE, and the injection time agrees well with the substorm onset time identified by the Polar Ultraviolet Imager. The method has been applied to an event happened at 22.9 UT on 11 March 1998, when both the satellites (1991-080 and LANL-97A) observed the dispersionless character. The results indicate that the radial distance of injection source locates at 8.1RE at magnetotail, and particles move earthward from magnetotail into inner magnetosphere at 22.5 UT.