期刊文献+
共找到887篇文章
< 1 2 45 >
每页显示 20 50 100
Fast cross validation for regularized extreme learning machine 被引量:9
1
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (elm regularization theory cross validation neural networks.
在线阅读 下载PDF
Constrained voting extreme learning machine and its application 被引量:5
2
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(elm) majority voting ensemble method sample based learning superheat degree(SD)
在线阅读 下载PDF
Robust signal recognition algorithm based on machine learning in heterogeneous networks
3
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(elm) features-extracted Rayleigh fading channel
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:1
4
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
5
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习机 腐蚀深度预测模型
在线阅读 下载PDF
基于二次分解、LSTM-ELM和误差修正的空气质量指数预测模型 被引量:1
6
作者 周建国 秦远 周路明 《安全与环境学报》 北大核心 2025年第1期322-334,共13页
精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法... 精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法。首先,采用改良的自适应白噪声完全集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和样本熵(Sample Entropy,SE)对原始AQI序列进行分解并重构,获得高频、中频和低频3个频率分量。其次,利用经过北方苍鹰算法(Northern Goshawk Optimization,NGO)优化的变分模态分解(Variational Mode Decomposition,VMD)对高频分量进行二次分解,进一步降低其复杂度。再次,引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)对长短期记忆网络(Long Short-Term Memory,LSTM)和极限学习机(Extreme Learning Machine,ELM)的关键参数进行优化,同时利用INFO-LSTM预测高频分量分解后的子序列,进而利用INFO-ELM分别预测中、低频分量,并将所得预测结果进行线性叠加。最后,利用NGO-VMD和INFO-ELM对误差序列进行分解和预测,并对初次预测结果进行修正,得到最终的AQI预测值。研究选取北京、上海和成都3个典型城市为例进行实证分析,并对比了7个对照试验,发现基于二次分解、LSTM-ELM和误差修正的模型具有最高的预测精度。该模型可为治理空气污染提供理论和技术上的帮助。 展开更多
关键词 环境工程学 空气质量指数预测 二次分解 长短期记忆网络 极限学习机 向量加权平均算法 误差修正模型
在线阅读 下载PDF
带状态检测机制的ELM-UKF算法估计锂电池SOC策略
7
作者 谈发明 赵俊杰 《汽车技术》 北大核心 2025年第2期46-54,共9页
为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练... 为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练ELM模型,将训练成功的ELM模型用于在线补偿UKF的SOC估计误差,进而实现估计偏差的实时修正;其次,算法针对ELM模型预测输出设计了状态检测机制,以此减小ELM模型预测输出过拟合对SOC估计波形平滑度的影响。试验结果表明,相较于单一类型的算法,所提出的组合算法具有良好的鲁棒性和泛化性,能有效提升锂电池SOC的估计效果。 展开更多
关键词 荷电状态 无迹卡尔曼滤波 极限学习机 状态检测 精度
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法
8
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
基于IVYA-FMD和EELM-Yager的轴承小样本故障诊断模型
9
作者 王恒迪 王豪馗 +2 位作者 陈鹏 吴升德 马盈丰 《机电工程》 北大核心 2025年第6期1093-1101,共9页
针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解... 针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解的精确度,并采用最小残差指数(REI)作为最优模态分量的选取准则,从最优模态分量中提取了故障信号时域、频域及熵值的关键特征;然后,将所提取的特征输入EELM中进行了故障识别;最后,采用Yager加权平均规则对EELM的分类结果进行了融合,得到了综合故障诊断结果。研究结果表明:IVYA-FMD在信号处理过程中,具有优秀的特征提取和抗干扰能力,可有效提取原始信号的故障特征;IVYA-FMD和EELM-Yager模型在实验数据中,训练集与测试集按照8∶2的比例进行分割时的准确率达到99.12%;当训练集与测试集按照2:8的比例进行分割时,该方法在实验数据中的准确率高达92.5%,在CWRU数据集和SEU数据集中的准确率均超过96.8%。与其他智能诊断模型相比,IVYA-FMD和EELM-Yager在小样本滚动轴承故障诊断领域展现出显著的可行性和优越性。 展开更多
关键词 特征模态分解 常春藤算法 集成极限学习机 Yager加权平均 小样本故障诊断 滚动轴承
在线阅读 下载PDF
基于CLD-COA-ELM的光伏阵列故障诊断方法研究 被引量:3
10
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进长鼻浣熊优化算法
在线阅读 下载PDF
基于PSO-WELM的不平衡OAM识别模型研究
11
作者 梁瑞悦 于海洋 +3 位作者 陈纯毅 倪小龙 胡小娟 李延风 《光通信技术》 北大核心 2025年第3期67-72,共6页
针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量... 针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量机(SVM)、深度学习(DL)、反向传播人工神经网络(BP-ANN)模型的性能。实验结果表明:PSO-WELM模型在较弱湍流强度下能够完全正确识别少数类、多数类OAM光束;在中等湍流强度下,PSO-WELM模型的各项评价指标值均优于对比方法,证明了该模型在识别不平衡状态OAM光束方面具有可行性和有效性。 展开更多
关键词 不平衡数据 轨道角动量 机器学习 粒子群优化算法 极限学习机
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价
12
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子群优化算法(PSO) 极限学习机(elm) 水质评价
在线阅读 下载PDF
基于VMD-MBWO-KELM的短期风电功率预测
13
作者 常振成 游国栋 +3 位作者 肖梓跃 芦玉冉 刘锐君 郗重企 《太阳能学报》 北大核心 2025年第6期623-631,共9页
针对风力发电功率存在较强的间歇性和波动性、预测精度较低的问题,提出基于变分模态分解(VMD)与多策略融合的白鲸优化算法(MBWO)的核极限学习机(KELM)预测模型。首先利用VMD对原始风力发电功率序列进行平稳化处理并构建MBWO-KELM模型,... 针对风力发电功率存在较强的间歇性和波动性、预测精度较低的问题,提出基于变分模态分解(VMD)与多策略融合的白鲸优化算法(MBWO)的核极限学习机(KELM)预测模型。首先利用VMD对原始风力发电功率序列进行平稳化处理并构建MBWO-KELM模型,然后将分解后的子序列输入MBWO-KELM模型进行预测,最后对不同子序列进行重构以得到最终的风电功率预测值。结果表明,不同季节下该模型的预测精度和稳定性明显优于其他模型,平均绝对百分比误差(MAPE)值均控制在6%以下,可提高风电能源的利用效率。 展开更多
关键词 风电功率 变分模态分解 预测 自适应算法 核极限学习机
在线阅读 下载PDF
基于SSA-KELM的输变电工程水土流失量预测研究
14
作者 雷磊 呼梦颖 +3 位作者 董子晗 师一卿 万昊 王良 《电测与仪表》 北大核心 2025年第8期189-196,共8页
针对输变电工程中水土流失量在线监测刚起步导致智能预测预警困难的问题,文中提出一种基于麻雀搜索算法和核极限学习机的输变电工程水土流失量智能预测方法。利用麻雀搜索算法(sparrow search algorithm,SSA)优化核极限学习机(kernel-ba... 针对输变电工程中水土流失量在线监测刚起步导致智能预测预警困难的问题,文中提出一种基于麻雀搜索算法和核极限学习机的输变电工程水土流失量智能预测方法。利用麻雀搜索算法(sparrow search algorithm,SSA)优化核极限学习机(kernel-based extreme learning machine,KELM)的正则化系数和核函数参数,以降雨量环境因子作为样本输入,构建SSA-KELM水土流失量预测模型。利用该预测模型对某变电站水土流失情况进行预测,并与核极限学习机和支持向量机预测方法对比。利用自主研发的现场监测系统获取水土保持监测数据,对所提预测算法进行长期测试,结果表明,基于SSA-KELM的水土流失量预测是有效的,而且比当前其他方法的预测精度更高。 展开更多
关键词 水土流失量 麻雀搜索算法 核极限学习机
在线阅读 下载PDF
基于多域信息融合与改进ELM的船舶电机轴承故障诊断
15
作者 戈淳 闫灶宇 +1 位作者 商嘉桐 薛红涛 《中国舰船研究》 北大核心 2025年第2期68-76,共9页
[目的]针对监测信号在单一分析域内的特征参数难以完整表征监测对象的运行状态,以及极限学习机(ELM)网络的模型参数难以达到最优的问题,提出一种基于多域信息融合与改进ELM的船舶电机轴承故障诊断方法。[方法]首先,基于船舶电机轴承振... [目的]针对监测信号在单一分析域内的特征参数难以完整表征监测对象的运行状态,以及极限学习机(ELM)网络的模型参数难以达到最优的问题,提出一种基于多域信息融合与改进ELM的船舶电机轴承故障诊断方法。[方法]首先,基于船舶电机轴承振动信号在时域、频域与时频域内的特征信息,构建多域特征参数集,作为故障诊断模型的输入;然后,运用麻雀搜索算法改进ELM网络的模型参数优化方法,确定最优的权值与阈值,进而提高故障诊断ELM模型的识别精度。最后,通过船用电机试验台架实验数据和开源实验数据,对电机轴承故障状态进行识别。[结果]基于船用电机试验台架的实验数据验证表明,采用多域特征参数集的故障诊断模型在训练集和测试集上的识别精度均为100%;基于开源实验数据验证表明,改进ELM模型的测试集识别精度为90.5%,相较于原始ELM模型提高了12.7%,且训练集识别精度与测试集识别精度均高于其他诊断模型。[结论]所提方法在输入特征参数集与诊断模型上均有改进,可有效识别电机轴承故障状态,且模型具有良好的稳定性,为船舶电机轴承故障诊断提供参考。 展开更多
关键词 电动机 轴承 故障分析 故障诊断 多域信息融合 麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于PSO-ELM的可植入UPQC的“源-网-荷-储”系统最优控制策略
16
作者 高波 刘川 +2 位作者 韩建 李泽文 韦宝泉 《电力系统保护与控制》 北大核心 2025年第2期62-72,共11页
针对传统“源-网-荷-储”(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality conditioner,UPQC)的SNLS系统最优控制方案。该方案通过基于粒子... 针对传统“源-网-荷-储”(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality conditioner,UPQC)的SNLS系统最优控制方案。该方案通过基于粒子群优化(particle swarm optimization,PSO)的极限学习机(extreme learning machine,ELM)方法实现。在多目标优化运行方案中:第一个优化目标为最大化光伏阵列发电量;第二、三个优化目标分别为最小化负荷电压偏差和最大化网侧功率因数;第四个优化目标则为最大化变换器的利用率。由于多目标优化问题不易实时求解,提出了一种基于优化目标优先权顺序的分层优化思想,将多目标优化问题简化为若干个单目标优化问题。然后,通过将求解的所有最优解集训练为PSO-ELM代理模型,以实现所提策略的快速精确执行。最后,通过仿真验证了所提方法的有效性。算例表明所提策略可提升可再生能源的消纳率与系统变换器的利用率,并优化电能质量。 展开更多
关键词 统一电能质量调节器 “源-网-荷-储”系统 光伏 PSO-elm
在线阅读 下载PDF
基于AMSD-WTSSA-DELM模型的铁路沿线短期风速预测方法
17
作者 尼比江·艾力 张林鍹 +5 位作者 李奕超 景雨啸 高金山 王渊 谢明浩 罗晓龙 《铁道科学与工程学报》 北大核心 2025年第2期543-556,共14页
我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及... 我国西北地区铁路沿线风速较强且存在非平稳性和波动性,导致风速预测精确度不高、模型泛化性差。基于此,提出一种基于AMSD-WTSSA-DELM的组合预测模型。首先,利用高度非平稳的原始风速序列、分量的长期相关表现、分量所包含的潜在模式及趋势和周期性等内在信息,进行每步分解处理,分别建立分解条件以及自适应更新阈值;为避免过度分解加入自适应重构方法,分解至无高复杂度分量为止,从而实现适应性较强的自适应多步分解。其次,提出WTSSA算法,即通过在麻雀搜索算法(SSA)中融入混沌映射、自适应权重和自适应t分布扰动策略,提升SSA全局搜索和局部探索能力,加快收敛速度,并通过测试函数验证WTSSA算法的卓越性。然后针对AMSD输出的各分量,分别建立由WTSSA优化权重和偏置的深度极限学习机(DELM)模型。最后汇总所有分量的预测数据,合成最终的预测输出。实验结果表明:模型在2组实际铁路沿线风速数据预测性能上提升效果明显,以第1组实验数据为例,本文方法与DELM相比,平均绝对误差(E_(mae))和均方根误差(E_(rmse))分别降低90.32%和82.25%,决定系数(R^(2))提升43.00%。综上所述,研究成果有效克服了风速的非线性特征导致的时迟问题,具有高泛化性能,能够预测短期风速变化,从而帮助铁路系统做出更有效的安全决策,为列车安全运行提供有力的技术支撑。 展开更多
关键词 短期风速预测 自适应多步分解 深度极限学习机 改进麻雀搜索算法 铁路沿线风速
在线阅读 下载PDF
基于GASF-BMKELM的滚动轴承故障诊断方法
18
作者 杨锡发 王林军 +3 位作者 邹腾枭 吴振雄 李响 陈保家 《三峡大学学报(自然科学版)》 北大核心 2025年第4期96-103,共8页
针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning m... 针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning machine,BMKELM)的故障诊断方法.首先,应用小波包节点对数能量与格拉姆角和场(GASF)将原始振动信号变换为小波包对数能量图特征;其次,使用多项式核函数与径向基核函数加权组合构建多核极限学习机(multi-kernel extreme learning machine,MKELM),同时,利用贝叶斯优化算法优化多核极限学习机的参数来提升诊断模型的故障识别能力;最后,以小波包对数能量图特征作为输入,再使用BMKELM模型完成故障特征识别与分类.通过两个数据集进行验证分析,实验结果表明,所提方法的准确率分别为99.39%和98.89%,具有较高的故障识别率和稳定性. 展开更多
关键词 滚动轴承 格拉姆角和场 小波包对数能量图 多核极限学习机 贝叶斯优化算法 故障诊断
在线阅读 下载PDF
基于TVFEMDⅡ-十种鱼群算法-DHKELM模型的日含沙量预测 被引量:1
19
作者 邓智予 谢静 崔东文 《中国农村水利水电》 北大核心 2025年第3期61-70,共10页
为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算... 为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算法/旗鱼优化(SFO)算法/海洋捕食者算法(MPA)/?鱼优化算法(ROA)/蝠鲼觅食优化(MRFO)算法在基准测试函数和实例目标函数上的优化效果,提出时变滤波器经验模态二次分解(TVFEMDⅡ)-十种鱼群算法-DHKELM日含沙量时间序列预测模型。首先,利用TVFEMDⅡ对日含沙量时间序列进行分解处理,得到若干分解分量,合理划分训练集和预测集;其次,基于各分量训练集构建DHKELM超参数优化实例目标函数,同时选取8个基准测试函数作为对比验证函数,利用十种鱼群算法分别对基准测试函数和实例目标函数进行极值寻优与对比分析。最后,建立TVFEMDⅡ-十种鱼群算法-DHKELM模型,通过云南省龙潭站汛期日含沙量预测实例对各模型进行验证。结果表明:(1)十种鱼群算法对基准测试函数寻优总排名与对实例目标函数寻优总排名仅有10%相同,总体上EEFO、GKSO寻优效果较好,ROA、WSO较差。(2)十种鱼群算法对实例目标函数寻优总排名与十种鱼群算法优化的各模型预测精度总排名基本一致,表明鱼群算法极值寻优能力越强,其优化获得的DHKELM超参数越优,由此构建的预测模型性能越好,日含沙量预测精度越高。(3)TVFEMDⅡ-十种鱼群算法-DHKELM模型对实例日含沙量预测的平均绝对百分比误差(MAPE)在0.927%~1.583%之间,模型计算规模小、预测精度高、稳健性能好,具有较好的实用价值和意义。(4)在分解分量十分有限的情形下,TVFEMDⅡ能将复杂的日含沙量时间序列分解为更具规律、更易建模预测的模态分量,大大改进时间序列分解效果,显著提升日含沙量预测精度。 展开更多
关键词 日含沙量预测 时变滤波器经验模态分解 二次分解 十种鱼群算法 深度混合核极限学习机 函数优化
在线阅读 下载PDF
基于改进优化算法的WELM月径流预测模型研究 被引量:1
20
作者 王应武 华春莉 茶建帮 《人民长江》 北大核心 2025年第2期82-90,共9页
针对在月径流预测中将传统数据分解技术直接应用于整个时间序列时,在模型训练过程中会提前使用“未来信息”从而导致预测结果“不可信”的问题,提出两种不引入“未来信息”的小波包变换(WPT)-改进蝴蝶优化算法(IBOA)/改进海马优化(ISHO... 针对在月径流预测中将传统数据分解技术直接应用于整个时间序列时,在模型训练过程中会提前使用“未来信息”从而导致预测结果“不可信”的问题,提出两种不引入“未来信息”的小波包变换(WPT)-改进蝴蝶优化算法(IBOA)/改进海马优化(ISHO)算法-加权极限学习机(WELM)月径流时间序列预测模型。首先,将月径流时间序列划分为训练集和预测集,利用WPT分别对训练集和预测集进行分解处理,避免在训练过程中提前使用“预测集信息”;其次,通过6个典型函数验证IBOA/ISHO的寻优能力,利用IBOA/ISHO优化WELM输入层权值和隐含层偏差(简称“超参数”),建立WPT-IBOA/ISHO-WELM模型对各分解分量进行预测和重构;同时构建基于整个时间序列分解的WPT-IBOA/ISHO-WELM(全)模型,与其他4种优化算法和未经分解、未经优化的IBOA/ISHO-WELM、WPT-WELM模型作对比分析;最后,通过云南省李仙江流域把边、景东水文站月径流时间序列预测实例对各模型进行检验。结果表明:①WPT-IBOA-WELM、WPT-ISHO-WELM模型对把边、景东站月径流预测的平均绝对百分比误差(MAPE)为1.649%~1.897%,预测精度优于其他对比模型,具有更好的预测效果。②WPT-IBOA-WELM、WPT-ISHO-WELM模型的预测精度基本不受“未来信息”的影响,能客观真实反映出月径流预测效果,具有较好的实用意义。③IBOA/ISHO仿真精度和WELM超参数优化效果均优于其他优化算法,表明通过logistic映射等策略可以显著提升IBOA/ISHO优化性能。 展开更多
关键词 月径流预测 小波包变换 改进蝴蝶优化算法 改进海马优化算法 加权极限学习机 超参数优化 把边水文站 景东水文站 李仙江流域
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部