A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree...A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.展开更多
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using...In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
基金the National Natural Science Foundation of China (70471065)the Shanghai Leading Academic Discipline Project (T0502).
文摘A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.
基金Project(70671040) supported by the National Natural Science Foundation of China
文摘In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金This work was supported by the National Natural Science Foundation of China (51507015, 61773402, 61540037, 71271215, 61233008, 51425701, 70921001, 51577014), the Natural Science Foundation of Hunan Province (2015JJ3008), the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (2014ZNDL002), and Hunan Province Science and Technology Program(2015NK3035).