Inflammatory diseases are often chronic and recurrent,and current treatments do not typically remove underlying disease drivers1.T cells participate in a wide range of inflammatory diseases such as psoriasis2,Crohn...Inflammatory diseases are often chronic and recurrent,and current treatments do not typically remove underlying disease drivers1.T cells participate in a wide range of inflammatory diseases such as psoriasis2,Crohn's disease3,oesophagitis4 and multiple sclerosis5,6,and clonally expanded antigen-specific T cells may contribute to disease chronicity and recurrence,in part by forming persistent pathogenic memory.Chronic rhinosinusitis and asthma are inflammatory airway diseases that often present as comorbidities7.Chronic rhinosinusitis affects more than 10%of the general population8.Among these patients,20-25%would develop nasal polyps,which often require repeated surgical resections owing to a high incidence of recurrence9.Whereas abundant T cells infiltrate the nasal polyps tissue10,11,T cell subsets that drive the disease pathology and promote recurrence are not fully understood.By comparing T cell repertoires in nasal polyp tissues obtained from consecutive surgeries,here we report that persistent CD8^(+)T cell clones carrying effector memory-like features colonize the mucosal tissue during disease recurrence,and these cells characteristically express the tryptase Granzyme K(GZMK).We find that GZMK cleaves many complement components,including C2,C3,C4 and C5,that collectively contribute to the activation of the complement cascade.GZMK-expressing CD8^(+)T cells participate in organized tertiary lymphoid structures,and tissue GZMK levels predict the disease severity and comorbidities better than well-established biomarkers such as eosinophilia and tissue interleukin-5.Using a mouse asthma model,we further show that GZMK-expressing CD8^(+)T cells exacerbate the disease in a manner dependent on the proteolytic activity of GZMK and complements.Genetic ablation or pharmacological inhibition of GZMK after the disease onset markedly alleviates tissue pathology and restores lung function.Our work identifies a pathogenic CD8^(+)memory T cell subset that promotes tissue inflammation and recurrent airway diseases by the effector molecule GZMK and suggests GZMK as a potential therapeutic target.展开更多
Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestin...Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestinal bacteria are promising potential producers of novel carbohydrate-active enzymes with unique properties.Here,a novel glycoside hydrolase family 128(GH128)laminarinase OUC-BsLam26 from the intestinal bacterium Bacteroides sp.CBA7301 was heterologously expressed and characterized.The recombinant OUC-BsLam26 with a molecular mass of 49.86 kDa exhibits highest activity(6.60 U/mg)at 45℃ and pH 6.0,which shows noticeable temperature and pH stability.The purified OUC-BsLam26 could degrade laminarin via an endo-type mode with the generation of laminaripentaose,laminaritetraose,laminaritriose,and laminaribiose,among them,laminaritetraose is the principal product,which accounts for 45.25% of the total products,which is significantly different from the reported GH128 laminarinases.The minimum recognition substrate of OUC-BsLam26 is laminarihexaose.Furthermore,OUC-BsLam26 also could catalyze the transglycosylation process with the production of some novel glycosides.Altogether,the intestinal bacterium Bacteroides sp.CBA7301 contains laminarinase with unique product composition and OUC-BsLam26 is a hopeful bio-catalyst with the potential to produce laminaritetraose and some novel glycosides.展开更多
Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situ...Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.展开更多
Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development...Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.展开更多
Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHS...Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHSPs in Lenzites gibbosa,a common polypore in northern temperate forests that causes spongy white rot of broadleaf trees,under temperature stress,L.gibbosa mycelia were grown at 25℃ for 9 d,treated at 33℃ for 15,30,60,and 120 min before sequencing the transcriptomes.From among 32 heat shock protein(HSP)genes found in the screen of the transcriptome data,a highly expressed gene was cloned and named Lghsp17.4.RT-qPCR was used to analyze the expression of the gene Lghsp17.4 under heat shock and dye stress.Both treatments induced higher expression of Lghsp17.4 at the transcriptional level,indicating that Lghsp17.4 might function in the response to heat stress and dye degradation.We previously found that L.gibbosa generally had a heat shock reaction(HSR)during degradation of aromatic compounds,and HSPs were always produced with manganese peroxidases(MnPs)and other lignin-degrading enzymes.Therefore,we measured the activity of MnPs in L.gibbosa after 33℃ heat shock to analyze the relationship between MnPs expression and Lghsp17.4 expression.Heat shocks of 0–30 min increased MnPs activity,and the change in MnPs activity were closely positively correlated with the expression levels of Lghsp17.4 over time,indicating a potential connection and interaction between LgHSP17.4 and MnPs during the HSR in L.gibbosa.Thus,LgHSP17.4 might have a positive regulatory effect on the HSR in L.gibbosa and be a critical component of a stress resistance mechanism.展开更多
Currently English has spread around the world so extensively that it has become a link language across many cultures.Since 1980s,China saw a warm discussion of language,culture and cross-cultural communication.An incr...Currently English has spread around the world so extensively that it has become a link language across many cultures.Since 1980s,China saw a warm discussion of language,culture and cross-cultural communication.An increasing number of researchers and educators began to be aware of the vital importance of culture in EFL teaching and learning and cultural content has been available in classrooms teaching.However,the development of English teaching and cross-cultural communicative competence is target culture-oriented and the ability of expressiveness of home culture in English is almost ignored.Thus,the thesis seeks to collect the students' perceptions on expressiveness of Chinese culture in English and the culture teaching in EFL in China.展开更多
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he...Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.展开更多
The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurat...The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurately is an important yet challenging problem.This study proposes a correction method that analyzes three physical processes.This method,which transforms the detection process from point detection to area detection,is based on a novel physical model and has been validated through theoretical analyses,experiments,and simulations.According to the average differences between the calculated and experimental results,the new method(1.67%)demonstrated better accuracy than the traditional simulation(2.17%).In a closed thermal neutron radiation field,the detector or strong neutron absorption material significantly perturbs the neutron fluence rate,whereas its impact on the energy spectrum shape and neutron directionality is relatively minor.Furthermore,based on the calculation results of the perturbation rate formula for medium materials with different compositions and sizes,the larger the volume and capture cross section of the medium,the higher the perturbation rate generated in the closed radiation field.展开更多
The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial ex...The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of ...This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.展开更多
线纹尖塘鳢(Oxyeleotris lineolata)具有典型性别生长二态性,雄鱼生长优势显著,doublesex and mab-3 related transcription factor(DMRT)家族是一个与性别决定相关的转录因子家族。基于线纹尖塘鳢性腺转录组数据,共获得2个dmrt基因的c...线纹尖塘鳢(Oxyeleotris lineolata)具有典型性别生长二态性,雄鱼生长优势显著,doublesex and mab-3 related transcription factor(DMRT)家族是一个与性别决定相关的转录因子家族。基于线纹尖塘鳢性腺转录组数据,共获得2个dmrt基因的cDNA序列,分别命名为Oxldmrt1和Oxldmrt3,并采用PCR技术扩增验证2个基因的cDNA序列。运用生物信息学方法分析2个基因序列结构特征,结果显示,Oxldmrt1和Oxldmrt3开放阅读框分别为903 bp和1363 bp,分别编码300个氨基酸和453个氨基酸;OxlDMRT1属于碱性蛋白,而OxlDMRT3属于酸性蛋白;2个基因均含有高度保守的DM结构域,OxlDMRT3还存在DMA结构域。氨基酸聚类分析显示,脊椎动物不同DMRT家族都是独立聚类,OxlDMRT1属于DMRT1家族,OxlDMRT3属于DMRT3家族,DMRT1家族最先聚类,再和DMRT3家族聚类。利用实时荧光定量PCR技术(real-time quantitative PCR,RT-qPCR)分析2个dmrt基因在雌鱼和雄鱼8个组织的表达水平,结果显示,2个基因在精巢中的表达量均显著高于其他组织(P<0.01),Oxldmrt3在脑中也有少量表达;利用RT-qPCR分析2个dmrt基因在早期不同发育时期的表达谱,显示2个基因在受精卵中的表达量均最高,Oxldmrt1在眼囊期的表达量最低,而Oxldmrt3在出膜7 d时的表达量最低。利用荧光原位杂交(fluorescencein situhybridization,FISH)对2个基因在精巢中的表达进行定位,显示2个基因在精巢中表达部位一致,均在精原细胞中有较强的表达信号。综上所述,Oxldmrt1和Oxldmrt3均在线纹尖塘鳢性腺胚胎发育阶段和精巢发育过程中起调节作用,而Oxldmrt1还可能参与胚胎后期性别决定和性别分化调控过程,Oxldmrt3还可能参与神经系统发育。本研究为线纹尖塘鳢性别决定与性别分化相关的分子机制研究提供了参考。展开更多
文摘Inflammatory diseases are often chronic and recurrent,and current treatments do not typically remove underlying disease drivers1.T cells participate in a wide range of inflammatory diseases such as psoriasis2,Crohn's disease3,oesophagitis4 and multiple sclerosis5,6,and clonally expanded antigen-specific T cells may contribute to disease chronicity and recurrence,in part by forming persistent pathogenic memory.Chronic rhinosinusitis and asthma are inflammatory airway diseases that often present as comorbidities7.Chronic rhinosinusitis affects more than 10%of the general population8.Among these patients,20-25%would develop nasal polyps,which often require repeated surgical resections owing to a high incidence of recurrence9.Whereas abundant T cells infiltrate the nasal polyps tissue10,11,T cell subsets that drive the disease pathology and promote recurrence are not fully understood.By comparing T cell repertoires in nasal polyp tissues obtained from consecutive surgeries,here we report that persistent CD8^(+)T cell clones carrying effector memory-like features colonize the mucosal tissue during disease recurrence,and these cells characteristically express the tryptase Granzyme K(GZMK).We find that GZMK cleaves many complement components,including C2,C3,C4 and C5,that collectively contribute to the activation of the complement cascade.GZMK-expressing CD8^(+)T cells participate in organized tertiary lymphoid structures,and tissue GZMK levels predict the disease severity and comorbidities better than well-established biomarkers such as eosinophilia and tissue interleukin-5.Using a mouse asthma model,we further show that GZMK-expressing CD8^(+)T cells exacerbate the disease in a manner dependent on the proteolytic activity of GZMK and complements.Genetic ablation or pharmacological inhibition of GZMK after the disease onset markedly alleviates tissue pathology and restores lung function.Our work identifies a pathogenic CD8^(+)memory T cell subset that promotes tissue inflammation and recurrent airway diseases by the effector molecule GZMK and suggests GZMK as a potential therapeutic target.
基金supported by the National Natural Science Foundation of China(32072159)Natural Science Foundation of Hainan Province(322QN338)+4 种基金Young Talent of Lifting Engineering for Science and Technology in Shandong,China(SDAST2021qt18)Qingdao Science and Technology Plan Key Research and Development Project(22-3-3-hygg-28-hy)Fundamental Research Funds for the Central Universities(202262003)Taishan Scholar Project of Shandong Province(tsqn202312099)Support Program for Youth Innovation Technology in Colleges and Universities of Shandong Province(2023KJ041)。
文摘Laminarin oligosaccharides(LOSs)with a specific degree of polymerization prepared through the laminarin degradation via laminarinase present more significant nutritional functions and application values.Human intestinal bacteria are promising potential producers of novel carbohydrate-active enzymes with unique properties.Here,a novel glycoside hydrolase family 128(GH128)laminarinase OUC-BsLam26 from the intestinal bacterium Bacteroides sp.CBA7301 was heterologously expressed and characterized.The recombinant OUC-BsLam26 with a molecular mass of 49.86 kDa exhibits highest activity(6.60 U/mg)at 45℃ and pH 6.0,which shows noticeable temperature and pH stability.The purified OUC-BsLam26 could degrade laminarin via an endo-type mode with the generation of laminaripentaose,laminaritetraose,laminaritriose,and laminaribiose,among them,laminaritetraose is the principal product,which accounts for 45.25% of the total products,which is significantly different from the reported GH128 laminarinases.The minimum recognition substrate of OUC-BsLam26 is laminarihexaose.Furthermore,OUC-BsLam26 also could catalyze the transglycosylation process with the production of some novel glycosides.Altogether,the intestinal bacterium Bacteroides sp.CBA7301 contains laminarinase with unique product composition and OUC-BsLam26 is a hopeful bio-catalyst with the potential to produce laminaritetraose and some novel glycosides.
基金supported by China Academy of Railway Sciences Corporation Limited(No.2021YJ127).
文摘Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.
基金supported by the National Key Research and Development Program of China(No.2021YFD2200304)FundamentalResearch Funds for the Central Universities(2572022DQ08)the National Natural Science Foundation of China(No32171738).
文摘Glutathione-S-transferase(GST,EC2.5.1.18)multifunctional protease is important for detoxification,defense against biotic and abiotic stresses,and secondary metabolic material transport for plant growth and development.In this study,71 members of the BpGST family were identified from the entire Betula platyphylla Suk.genome.Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction.BpGSTs can be divided into seven subfamilies,with a majority of birch U and F subfamily members according to gene structure,conserved motifs and evolutionary analysis.GST family genes showed collinearity with 22 genes in Oryza sativa L.,and three genes in Arabidopsis thaliana;promoter cis-acting elements predicted that the GST gene family is functional in growth,hormone regulation,and abiotic stress response.Most members of the F subfamily of GST(BpGSTFs)were expressed in roots,stems,leaves,and petioles,with the most expression observed in leaves.On the basis of the expression profiles of F subfamily genes(BpGSTF1 to BpGSTF13)during salt,mannitol and ABA stress,BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress;for instance,BpGSTs may function at different times during abiotic stress.This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.:2572016AA04)Northeast Asia Biodiversity Research Center Double First class Funds(Grant No.:411146030416 and No.:411147021003).
文摘Small heat shock proteins(sHSPs)act as molecular chaperones that can prevent the accumulation of damaged proteins during abiotic stress,especially heat shock,but the mechanism is not clear.To study the function of sHSPs in Lenzites gibbosa,a common polypore in northern temperate forests that causes spongy white rot of broadleaf trees,under temperature stress,L.gibbosa mycelia were grown at 25℃ for 9 d,treated at 33℃ for 15,30,60,and 120 min before sequencing the transcriptomes.From among 32 heat shock protein(HSP)genes found in the screen of the transcriptome data,a highly expressed gene was cloned and named Lghsp17.4.RT-qPCR was used to analyze the expression of the gene Lghsp17.4 under heat shock and dye stress.Both treatments induced higher expression of Lghsp17.4 at the transcriptional level,indicating that Lghsp17.4 might function in the response to heat stress and dye degradation.We previously found that L.gibbosa generally had a heat shock reaction(HSR)during degradation of aromatic compounds,and HSPs were always produced with manganese peroxidases(MnPs)and other lignin-degrading enzymes.Therefore,we measured the activity of MnPs in L.gibbosa after 33℃ heat shock to analyze the relationship between MnPs expression and Lghsp17.4 expression.Heat shocks of 0–30 min increased MnPs activity,and the change in MnPs activity were closely positively correlated with the expression levels of Lghsp17.4 over time,indicating a potential connection and interaction between LgHSP17.4 and MnPs during the HSR in L.gibbosa.Thus,LgHSP17.4 might have a positive regulatory effect on the HSR in L.gibbosa and be a critical component of a stress resistance mechanism.
文摘Currently English has spread around the world so extensively that it has become a link language across many cultures.Since 1980s,China saw a warm discussion of language,culture and cross-cultural communication.An increasing number of researchers and educators began to be aware of the vital importance of culture in EFL teaching and learning and cultural content has been available in classrooms teaching.However,the development of English teaching and cross-cultural communicative competence is target culture-oriented and the ability of expressiveness of home culture in English is almost ignored.Thus,the thesis seeks to collect the students' perceptions on expressiveness of Chinese culture in English and the culture teaching in EFL in China.
基金supported by the Fujian Province Seed Industry Innovation and Industrialization Project“Innovation and Industrialization Development of Precious Tree Seed Industries(Phoebe bornei)”(ZYCX-LY-202102)the Sub-project of National Key R&D Program“Phoebe bornei Efficient Cultivation Technology”(2016YFD0600603-2).
文摘Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species.
基金supported by the Fundamental Research Funds of the National Institute of MetrologyChina(No.AKYZZ2113)+1 种基金National Key Research and Development Program of China(No.2017YFF0206205)the Team Building Program of Nanjing University(No.1480604114)。
文摘The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurately is an important yet challenging problem.This study proposes a correction method that analyzes three physical processes.This method,which transforms the detection process from point detection to area detection,is based on a novel physical model and has been validated through theoretical analyses,experiments,and simulations.According to the average differences between the calculated and experimental results,the new method(1.67%)demonstrated better accuracy than the traditional simulation(2.17%).In a closed thermal neutron radiation field,the detector or strong neutron absorption material significantly perturbs the neutron fluence rate,whereas its impact on the energy spectrum shape and neutron directionality is relatively minor.Furthermore,based on the calculation results of the perturbation rate formula for medium materials with different compositions and sizes,the larger the volume and capture cross section of the medium,the higher the perturbation rate generated in the closed radiation field.
基金supported by the National Natural Science Foundation of China under Grant No.62276051the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC0640Medical Industry Information Integration Collaborative Innovation Project of Yangtze Delta Region Institute under Grant No.U0723002。
文摘The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
基金supported by the National Natural Science Foundation of China(Grant No.62102032)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202211417010).
文摘This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.