期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and hygrothermal performance of composite phase change material wallboard with humidity control based on expanded perlite/diatomite/paraffin 被引量:14
1
作者 YANG Hua LIU Yun +2 位作者 KONG Xiang-fei CHEN Wan-he YAO Cheng-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2387-2398,共12页
Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CP... Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency. 展开更多
关键词 thermal storage humidity control phase change material PARAFFIN expanded perlite diatom mud
在线阅读 下载PDF
Fabrication, property characterization and thermal performance of composite phase change material plates based on tetradecanol-myristic acid binary eutectic mixture/expanded perlite and expanded vermiculite for building application 被引量:7
2
作者 YANG Hua CHEN Wan-he +1 位作者 KONG Xiang-fei RONG Xian 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2578-2595,共18页
A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum ... A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum adsorption roller to prepare phase change material(PCM)particle(PCP).Then EP and EVMT-based composite PCM plates were respectively fabricated through a mold pressing method.The thermal property,chemical stability,microstructure and durability were characterized by differential scanning calorimeter(DSC),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM)and thermal cycling tests,respectively.The results show that both PCPs have high latent heats with 110 J/g for EP-based PCP and more than 130 J/g for EVMT-based PCP,compact microstructure without PCM leakage,stable chemical property and good durability.The research results have proved the feasibility for the vacuum adsorption roller used in the composite PCM fabrication.Results of thermal storage performance experiment indicate that the fabricated PCM plates have better thermal inertia than common building materials,and the thermal storage performance of PCM plates has nonlinearly changed with outside air velocity and temperature increase.Therefore,PCM plates show a significant potential for the practical application of building thermal storage. 展开更多
关键词 thermal storage phase change material expanded perlite expanded vermiculite binary eutectic mixture
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部