In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio...In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de...Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.展开更多
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th...A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.展开更多
Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence reg...Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions.展开更多
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith...A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases.展开更多
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o...Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.展开更多
Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evo...Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evolutionary algorithms still needs to be improved.A data-driven evolutionary sampling optimization(DESO)framework is proposed,where at each generation it randomly employs one of two evolutionary sampling strategies,surrogate screening and surrogate local search based on historical data,to effectively balance global and local search.In DESO,the radial basis function(RBF)is used as the surrogate model in the sampling strategy,and different degrees of the evolutionary process are used to sample candidate points.The sampled points by sampling strategies are evaluated,and then added into the database for the updating surrogate model and population in the next sampling.To get the insight of DESO,extensive experiments and analysis of DESO have been performed.The proposed algorithm presents superior computational efficiency and robustness compared with five state-of-the-art algorithms on benchmark problems from 20 to 200 dimensions.Besides,DESO is applied to an airfoil design problem to show its effectiveness.展开更多
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro...In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.展开更多
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu...Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.展开更多
In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental ...In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making.展开更多
A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral com...A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.展开更多
In this paper,a comparative study of the path planning problem using evolutionary algorithms,in comparison with classical methods such as the A*algorithm,is presented for a holonomic mobile robot.The configured naviga...In this paper,a comparative study of the path planning problem using evolutionary algorithms,in comparison with classical methods such as the A*algorithm,is presented for a holonomic mobile robot.The configured navigation system,which consists of the integration of sensors sources,map formatting,global and local path planners,and the base controller,aims to enable the robot to follow the shortest smooth path delicately.Grid-based mapping is used for scoring paths efficiently,allowing the determination of collision-free trajectories from the initial to the target position.This work considers the evolutionary algorithms,the mutated cuckoo optimization algorithm(MCOA)and the genetic algorithm(GA),as a global planner to find the shortest safe path among others.A non-uniform motion coefficient is introduced for MCOA in order to increase the performance of this algorithm.A series of experiments are accomplished and analyzed to confirm the performance of the global planner implemented on a holonomic mobile robot.The results of the experiments show the capacity of the planner framework with respect to the path planning problem under various obstacle layouts.展开更多
A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results ...A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.展开更多
Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization mode...Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.展开更多
In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump ...In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump intensity was introduced to the existing discrete microstructure model to denote large price fluctuations. The nonparametric method of LEE was used for detecting jumps. Further, the extended Kalman filter and the maximum likelihood method were applied to discrete microstructure modeling and the estimation of two market potential variables: market excess demand and liquidity. At last, based on the estimated variables, an assets allocation strategy using evolutionary algorithm was designed to control the weight of each asset dynamically. Case studies on IBM Stock show that jumps with variable intensity are detected successfully, and the assets allocation strategy may effectively keep the total assets growth or prevent assets loss at the stochastic financial market.展开更多
基金Projects(20976048, 21176072) supported by the National Natural Science Foundation of ChinaProject provided by the Fundamental Research Fund for Central Universities
文摘In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金Projects(60234030 60404021) supported by the National Natural Science Foundation of China
文摘Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.
基金supported by the National Natural Science Foundation of China (60374063)the Natural Science Basic Research Plan Project in Shaanxi Province (2006A12)+1 种基金the Science and Technology Research Project of the Educational Department in Shaanxi Province (07JK180)the Emphasis Research Plan Project of Baoji University of Arts and Science (ZK0840)
文摘A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.
基金Supported by National Natural Science Foundation of China(61074020)
文摘Evolutionary algorithms(EAs)were shown to be effective for complex constrained optimization problems.However,inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions.In this paper,we propose an iterative dynamic diversity evolutionary algorithm(IDDEA)with contractive subregions guiding exploitation through local extrema to the global optimum in suitable steps.In IDDEA,a novel optimum estimation strategy with multi-agents evolving diversely is suggested to e?ciently compute dominance trend and establish a subregion.In addition,a subregion converging iteration is designed to redistrict a smaller subregion in current subregion for next iteration,which is based on a special dominance estimation scheme.Meanwhile,an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible agents with the lowest fitness of feasible agents.Furthermore,several engineering design optimization problems taken from the specialized literature are successfully solved by the present algorithm with high reliable solutions.
文摘A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3302501)the National Natural Science Foundation of China(Grant Nos.12102077,12161076,U2241263).
文摘Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.
基金supported by the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUGGC03).
文摘Surrogate models have shown to be effective in assisting evolutionary algorithms(EAs)for solving computationally expensive complex optimization problems.However,the effectiveness of the existing surrogate-assisted evolutionary algorithms still needs to be improved.A data-driven evolutionary sampling optimization(DESO)framework is proposed,where at each generation it randomly employs one of two evolutionary sampling strategies,surrogate screening and surrogate local search based on historical data,to effectively balance global and local search.In DESO,the radial basis function(RBF)is used as the surrogate model in the sampling strategy,and different degrees of the evolutionary process are used to sample candidate points.The sampled points by sampling strategies are evaluated,and then added into the database for the updating surrogate model and population in the next sampling.To get the insight of DESO,extensive experiments and analysis of DESO have been performed.The proposed algorithm presents superior computational efficiency and robustness compared with five state-of-the-art algorithms on benchmark problems from 20 to 200 dimensions.Besides,DESO is applied to an airfoil design problem to show its effectiveness.
基金supported by the National Key R&D Plan(2020YFB1712902)the National Natural Science Foundation of China(52075036).
文摘In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches.
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金supported by the Shenzhen Innovation Technology Program(JCYJ20160422112909302)
文摘Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.
基金supported by the National Natural Science Foundation of China (72071206,71690233)the Science and Technology Innovation Program of Hunan Province (2020RC4046)。
文摘In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making.
基金Projects(61203308,61309014)supported by the National Natural Science Foundation of China
文摘A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.
文摘In this paper,a comparative study of the path planning problem using evolutionary algorithms,in comparison with classical methods such as the A*algorithm,is presented for a holonomic mobile robot.The configured navigation system,which consists of the integration of sensors sources,map formatting,global and local path planners,and the base controller,aims to enable the robot to follow the shortest smooth path delicately.Grid-based mapping is used for scoring paths efficiently,allowing the determination of collision-free trajectories from the initial to the target position.This work considers the evolutionary algorithms,the mutated cuckoo optimization algorithm(MCOA)and the genetic algorithm(GA),as a global planner to find the shortest safe path among others.A non-uniform motion coefficient is introduced for MCOA in order to increase the performance of this algorithm.A series of experiments are accomplished and analyzed to confirm the performance of the global planner implemented on a holonomic mobile robot.The results of the experiments show the capacity of the planner framework with respect to the path planning problem under various obstacle layouts.
基金Project(2011FJ3016)supported by the Research Foundation of Science & Technology Office of Hunan Province,China
文摘A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.
基金Project(2009AA11Z220)supported by National High Technology Research and Development Program of ChinaProjects(61070112,61070116)supported by the National Natural Science Foundation of China+1 种基金Project(2012LLYJTJSJ077)supported by the Ministry of Public Security of ChinaProject(KYQD14003)supported by Tianjin University of Technology and Education,China
文摘Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.
基金Projects(71271215,71221061) supported by the National Natural Science Foundation of ChinaProject(2011DFA10440) supported by the International Science&Technology Cooperation Program of ChinaProject(CX2012B067) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump intensity was introduced to the existing discrete microstructure model to denote large price fluctuations. The nonparametric method of LEE was used for detecting jumps. Further, the extended Kalman filter and the maximum likelihood method were applied to discrete microstructure modeling and the estimation of two market potential variables: market excess demand and liquidity. At last, based on the estimated variables, an assets allocation strategy using evolutionary algorithm was designed to control the weight of each asset dynamically. Case studies on IBM Stock show that jumps with variable intensity are detected successfully, and the assets allocation strategy may effectively keep the total assets growth or prevent assets loss at the stochastic financial market.