Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
针对复杂化工过程非平稳性、事件驱动性导致的关键指标参数难以精确软测量的问题,提出了一种事件驱动的深度信念网络(event-driven deep belief network,EDDBN)软测量模型设计方法。首先,获取化工过程运行数据并搭建深度信念网络(driven...针对复杂化工过程非平稳性、事件驱动性导致的关键指标参数难以精确软测量的问题,提出了一种事件驱动的深度信念网络(event-driven deep belief network,EDDBN)软测量模型设计方法。首先,获取化工过程运行数据并搭建深度信念网络(driven deep belief network,DBN)模型,以数据驱动的方式对DBN模型进行训练,获得基于DBN的软测量模型。其次,根据DBN模型的训练误差变化特性定义事件,当积极事件发生时会加速当前模型参数的学习步长,当消极事件发生时会跳过当前数据样本并直接进入下一时刻的数据样本学习。这种事件驱动的选择性学习策略不仅能够有效地优化软测量模型训练过程,而且还能降低计算复杂度。同时,通过构造基于马尔可夫链的动态学习过程,分析任意连续两次事件对应输出性能势之差的有界性,给出了EDDBN训练过程的收敛性分析。最后,将EDDBN软测量模型用于湿法烟气脱硫系统二氧化硫(SO_(2))浓度软测量实验,结果表明所提出的EDDBN软测量模型能够在非平稳运行工况下实现对SO_(2)浓度快速、精确地预测分析,并且计算复杂度在数据集(1)和数据集(2)上分别降低约63.83%和63.33%。展开更多
液流电池具有充放电循环次数大、容量高及寿命长等优点,是长时大规模储能的理想选择,但是其复杂的结构对电池控制系统的要求较高,传统开发方式难以满足其多样的控制需求,因此提出精准度更高、实时性更好的基于事件驱动技术的液流电池控...液流电池具有充放电循环次数大、容量高及寿命长等优点,是长时大规模储能的理想选择,但是其复杂的结构对电池控制系统的要求较高,传统开发方式难以满足其多样的控制需求,因此提出精准度更高、实时性更好的基于事件驱动技术的液流电池控制系统开发方法。首先针对液流电池稳定性需求高、内部损耗大等问题,提出了主/辅助电堆协同架构,并对该架构系统进行建模分析;然后基于事件驱动技术对控制系统进行模块化设计,包括柔性充放电控制、辅助电堆参与的黑启动控制、基于卡尔曼滤波的电池荷电状态(state of charge,SOC)估计等;最后搭建半实物仿真平台,对所提架构和策略进行验证,证明了该架构和策略能提高系统的能量转换效率和稳定性。展开更多
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
文摘针对复杂化工过程非平稳性、事件驱动性导致的关键指标参数难以精确软测量的问题,提出了一种事件驱动的深度信念网络(event-driven deep belief network,EDDBN)软测量模型设计方法。首先,获取化工过程运行数据并搭建深度信念网络(driven deep belief network,DBN)模型,以数据驱动的方式对DBN模型进行训练,获得基于DBN的软测量模型。其次,根据DBN模型的训练误差变化特性定义事件,当积极事件发生时会加速当前模型参数的学习步长,当消极事件发生时会跳过当前数据样本并直接进入下一时刻的数据样本学习。这种事件驱动的选择性学习策略不仅能够有效地优化软测量模型训练过程,而且还能降低计算复杂度。同时,通过构造基于马尔可夫链的动态学习过程,分析任意连续两次事件对应输出性能势之差的有界性,给出了EDDBN训练过程的收敛性分析。最后,将EDDBN软测量模型用于湿法烟气脱硫系统二氧化硫(SO_(2))浓度软测量实验,结果表明所提出的EDDBN软测量模型能够在非平稳运行工况下实现对SO_(2)浓度快速、精确地预测分析,并且计算复杂度在数据集(1)和数据集(2)上分别降低约63.83%和63.33%。
文摘液流电池具有充放电循环次数大、容量高及寿命长等优点,是长时大规模储能的理想选择,但是其复杂的结构对电池控制系统的要求较高,传统开发方式难以满足其多样的控制需求,因此提出精准度更高、实时性更好的基于事件驱动技术的液流电池控制系统开发方法。首先针对液流电池稳定性需求高、内部损耗大等问题,提出了主/辅助电堆协同架构,并对该架构系统进行建模分析;然后基于事件驱动技术对控制系统进行模块化设计,包括柔性充放电控制、辅助电堆参与的黑启动控制、基于卡尔曼滤波的电池荷电状态(state of charge,SOC)估计等;最后搭建半实物仿真平台,对所提架构和策略进行验证,证明了该架构和策略能提高系统的能量转换效率和稳定性。