期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
CFD studies of scraper built in SPA clarifying tank based on mixture solid-liquid two-phase flow model 被引量:1
1
作者 CHEN Yu ZHOU Jianxu ZHANG Zhengyang 《排灌机械工程学报》 EI CSCD 北大核心 2018年第7期553-559,586,共8页
In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction r... In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior. 展开更多
关键词 strong phosphoric acid clarifying TANK SCRAPER MIXTURE two-phase model GRANULAR SUSPENSION computational fluid dynamics
在线阅读 下载PDF
Prediction of shear bands in sand based on granular flow model and two-phase equilibrium
2
作者 张义同 齐德瑄 +1 位作者 杜如虚 任述光 《Journal of Central South University》 SCIE EI CAS 2008年第S1期316-321,共6页
In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials out... In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements. 展开更多
关键词 strain localization locally-deformed BANDS shear BANDS two-phase equilibrium GRANULAR model of SAND
在线阅读 下载PDF
Three-dimensional CFD simulation of inlet structure flow in pumping station based on Eulerian solid- liquid two-phase flow model
3
作者 Mi Zihao Zhou Daqing Mao Yuanting 《排灌机械工程学报》 EI CSCD 北大核心 2015年第6期494-498,共5页
Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l... Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced. 展开更多
关键词 pumping station FOREBAY sediment deposition Eulerian two-phase flow model
在线阅读 下载PDF
Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chem ical launch with discharge rod plasma generator 被引量:6
4
作者 Yan-jie Ni Yong Jin +3 位作者 Niankai Cheng Chun-xia Yang Hai-yuan Li Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第4期249-256,共8页
Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d... Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments. 展开更多
关键词 Electrothermal-chemical LAUNCH Interior BALLISTICS SIMULATION two-phase flow TWO-DIMENSIONAL model
在线阅读 下载PDF
A composite material model for investigation of micro-fracture mechanism of brittle rock subjected to uniaxial compression 被引量:4
5
作者 CHEN Feng,SUN Zong qi,XU Ji cheng,ZHANG Jing yi (Key Laboratory of Nonferrous Metal Materials Science & Engineering, Central South University, Changsha 410083, China) 《Journal of Central South University of Technology》 2001年第4期258-262,共5页
A two phase model of rock was proposed in order to investigate the mechanism of brittle fracture due to uniaxial compression, in which rock was considered to be a composite material consisting of hard grains and collo... A two phase model of rock was proposed in order to investigate the mechanism of brittle fracture due to uniaxial compression, in which rock was considered to be a composite material consisting of hard grains and colloids. The stress state in colloid region near grains was calculated using Finite Element Method (FEM). The influence of the tensile stresses on the crack initiation and failure process of brittle rock subjected to uniaxial compression was investigated by numerical experiments. The FE results show that tensile stresses are induced easily in the neighboring area of hard grains with the maximum value near grain boundaries. The distribution of tensile stresses depends on the relative position of hard grains. The cracks initiated just near the boundary area of hard grains, which was governed by tensile stress. These results clearly reveal the micro fracture mechanism of brittle rock loaded by uniaxial compression. It can be concluded that the failure mode of brittle rock under uniaxial compression is still tensile fracture from the point view of microstructure. However, since the wide colloid region is still under compressive stress state, further propagation of boundary cracks through this region obviously needs more external load, thus causing the uniaxial compressive strength of rock much higher than its tensile strength obtained via Brazilian (splitting) 展开更多
关键词 two-phase model MICRO-FRACTURE ROCK UNIAXIAL compression
在线阅读 下载PDF
Joint optimization of inspection, maintenance, and spare ordering policy considering defective products loss 被引量:2
6
作者 HAN Mengying YANG Jianhua ZHAO Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1167-1179,共13页
This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-... This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-state single-unit manufacturing system.When an inspection detects a minor defect,a second phase inspection is initiated and a regular order is placed.Product quality begins to deteriorate when the system undergoes a severe defect.To counter this,an advanced replacement of the minor defective system is carried out at the Jth second phase inspection.If a severe defect is recognized prior to the Jth inspection,or if system failure occurs,preventive or corrective replacement is executed.The timeliness of replacement depends on the availability of spare.We adopt two modes of ordering:a regular order and an emergency order.Meanwhile,a threshold level is introduced to determine whether an emergency order is preferred even when the regular order is already ordered but has not yet arrived.The optimal joint inspection-based maintenance and spare ordering policy is formulated by minimizing the expected cost per unit time.A simulation algorithm is proposed to obtain the optimal two-phase inspection interval,threshold level and advanced replacement interval.Results from several numerical examples demonstrate that,in terms of the expected cost per unit time,our proposed model is superior to some existing models. 展开更多
关键词 maintenance two-phase inspection spare ordering three-stage failure process delay-time model
在线阅读 下载PDF
Numerical simulation on centrifugal pump compressible flow field with different gas volume fractions
7
作者 WANG Like LIAO Weili +4 位作者 LU Jinling LUO Xingqi RUAN Hui ZHAO Yaping WANG Jing 《排灌机械工程学报》 EI CSCD 北大核心 2019年第2期106-111,129,共7页
In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by appl... In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss. 展开更多
关键词 CENTRIFUGAL pump Mixture model GAS-LIQUID two-phase flow gas volume fraction COMPRESSIBILITY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部