Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l...Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.展开更多
Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d...Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.展开更多
In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by appl...In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.展开更多
基金Chinese National Foundation of Natural Science-Key Projects(51339005)
文摘Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.
文摘Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.
基金The National Natural Science Foundation of China(51679196,51879216,51339005)
文摘In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.