期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The impact of the environmental factors on the photosynthetic activity of common pine (Pinus sylvestris) in spring and in autumn in the region of Eastern Siberia 被引量:3
1
作者 N.E.Korotaeva M.V.Ivanova +1 位作者 G.G.Suvorova G.B.Borovskii 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1465-1473,共9页
The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems.Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is str... The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems.Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result,an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine(Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature(rs= 0.655,p = 0.00315) or available soil water supply(rs= 0.892,p = 0.0068). In autumn within different years, significant correlation was shown with two(temperature of air and soil; rs= 0.789 and 0.896, p = 0.00045 and 0.000006,respectively) and four factors: temperature of air(rs=0.749, p = 0.00129) and soil(rs= 0.84, p = 0.00000),available soil water supply(rs= 0.846, p = 0.00013) and irradiance(rs= 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn.This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn. 展开更多
关键词 Pinus sylvestris L. Eastern Siberia CORRELATIONS Photosynthetic productivity Seasonal changes in environment
在线阅读 下载PDF
Effects of Neo-Tethyan evolution on the petroleum system of Persian Gulf Superbasin 被引量:9
2
作者 ZHU Rixiang ZHANG Shuichang +7 位作者 WAN Bo ZHANG Wang LI Yong WANG Huajian LUO Beiwei LIU Yuke HE Zhiliang JIN Zhijun 《Petroleum Exploration and Development》 2023年第1期1-13,共13页
Considering the Neo-Tethyan tectonic process and the resulting environmental changes,a geodynamic model of“one-way train loading”is proposed to analyze the formation and evolution mechanism of the Persian Gulf Super... Considering the Neo-Tethyan tectonic process and the resulting environmental changes,a geodynamic model of“one-way train loading”is proposed to analyze the formation and evolution mechanism of the Persian Gulf Superbasin with the most abundant hydrocarbons in the world.The Persian Gulf Superbasin has long been in a passive continental margin setting since the Late Paleozoic in the process of unidirectional subduction,forming a superior regional space of hydrocarbon accu-mulation.During the Jurassic-Cretaceous,the Persian Gulf Superbasin drifted slowly at low latitudes,and developed multiple superimposed source-reservoir-caprock assemblages as a combined result of several global geological events such as the Hadley Cell,the Equatorial Upwelling Current,and the Jurassic True Polar Wander.The collision during the evolution of the foreland basin since the Cenozoic led to weak destruction,which was conducive to the preservation of oil and gas.Accordingly,it is be-lieved that the slow drifting and long retention in favorable climate zone of the continent are the critical factors for hydrocarbon enrichment.Moreover,the prospects of hydrocarbon potential in other continents in the Neo-Tethyan were proposed. 展开更多
关键词 Neo-Tethyan domain continental break-up and convergence one-way train loading model environment change Persian Gulf Superbasin
在线阅读 下载PDF
Effect of change of sand properties on travel distance of ricocheted debris
3
作者 Yoon Keon Kim Woo Chun Choi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1486-1495,共10页
The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance... The debris from exploded buildings can ricochet after colliding with the ground,thus increasing the debris travel distance and danger from any associated impacts or collisions.To reduce this danger,the travel distance of ricocheted debris must be accurately predicted.This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium.Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand.Finite element analysis(FEA)was then applied to these variables to predict the speed and angle of the debris after ricochet.The FEA results were compared with results of low-speed ricochet experiments,which employed variable temperature and water content.The travel distance of the debris was calculated using MATLAB,via trajectory equations considering the drag coefficient.As the internal friction angle decreased,the shear stress decreased,leading to deeper penetration of the debris into the sand.As the loss of kinetic energy increased,the velocity and travel distance of the ricocheted debris decreased.Changes in the ricochet velocity and travel distance of the debris,according to changes in the internal friction angle,indicated that the debris was affected by the environment. 展开更多
关键词 RICOCHET Exploded debirs environmental change SAND Temperature Water content Internal friction angle Travel distance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部