Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the...Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.展开更多
To compare the suitable working conditions of polypropylene(PP)and polycaprolactam(PA6)materials in actual use in automobiles,the effects of different temperature aging and different reagents on the mechanical propert...To compare the suitable working conditions of polypropylene(PP)and polycaprolactam(PA6)materials in actual use in automobiles,the effects of different temperature aging and different reagents on the mechanical properties of the two materials,such as tensile,bending,compression,and impact were studied.The results indicate that the short⁃term low⁃temperature environment had no much effect on the mechanical properties of PP and PA6.After long⁃term thermal aging at 80℃,the strength of PP and PA6 increased while their toughness decreased.After short⁃term thermal aging at 120℃,PP strength decreases and toughness increases,while PA6 strength increases and toughness decreases.The soaking of glass water and car shampoo had no much effect on the mechanical properties of PP,but had a significant impact on the mechanical properties of PA6.With the increase of soaking time,the strength of PA6 significantly decreases and the toughness significantly increases.The soaking of 95#gasoline had no much effect on the mechanical properties of PA6,but has a significant impact on the mechanical properties of PP.After 720 h of soaking,the retention rates of the tensile strength,bending strength,and compressive strength of PP were all less than 80%,while the retention rate of the impact strength of the cantilever beam was 160.4%.展开更多
Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threat...Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learni...The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learning(ML)-based prediction method to study the evolution of the mechanical properties of Al-Li alloys in the marine environment.We obtained the mechanical properties of Al-Li alloy samples under uniaxial tensile deformation at different exposure times through Marine exposure experiments.We obtained the strain evolution by digital image correlation(DIC).The strain field images are voxelized using 2D-Convolutional Neural Networks(CNN)autoencoders as input data for Long Short-Term Memory(LSTM)neural networks.Then,the output data of LSTM neural networks combined with corrosion features were input into the Back Propagation(BP)neural network to predict the mechanical properties of Al-Li alloys.The main conclusions are as follows:1.The variation law of mechanical properties of2297-T8 in the Marine atmosphere is revealed.With the increase in outdoor exposure test time,the tensile elastic model of 2297-T8 changes slowly,within 10%,and the tensile yield stress changes significantly,with a maximum attenuation of 23.6%.2.The prediction model can predict the strain evolution and mechanical response simultaneously with an error of less than 5%.3.This study shows that a CNN/LSTM system based on machine learning can be built to capture the corrosion characteristics of Marine exposure experiments.The results show that the relationship between corrosion characteristics and mechanical response can be predicted without considering the microstructure evolution of metal materials.展开更多
Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by ...Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by using weight loss,electrochemical measurement techniques(specially designed electrochemical testing device for simulating marine atmospheric environments)and surface morphology characterization analysis(SEM/EDS,XRD,RAMAN,XPS).Weight loss results show that the three corrosion inhibitors have good corrosion inhibition effect on red copper,and the corrosion inhibition efficiency in the order of glutamine(83.62%)>urea(68.46%)>paracetamol(61.47%).Surface morphology characterization analysis provides evidence of adsorption of corrosion inhibitors molecules on the red copper surface,thus forming a protective film that blocked the red copper surface from the aggressive chloride ion attack.展开更多
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw...With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.展开更多
A brief review of the basic terminology on simulation, simulation life-cycle activities such as model-based activities, behavior-oriented activities, and quality assurance activities is given. Then, the challenges and...A brief review of the basic terminology on simulation, simulation life-cycle activities such as model-based activities, behavior-oriented activities, and quality assurance activities is given. Then, the challenges and opportunities for the advancement of the state-of-the-art in simulation environments are discussed under the following headings: modelling environments, simulation environments, mixed simulation environments, and comprehensive simulation environments.展开更多
This paper focused on residential district planning process.Using GIS and SketchUp software,a common digital relief map model of a residential district was created,and the air distribution(both velocity and temperatur...This paper focused on residential district planning process.Using GIS and SketchUp software,a common digital relief map model of a residential district was created,and the air distribution(both velocity and temperature)within this residential district was established by CFD simulation.So,the velocity and temperature of the air at any location within the residential district,as well as the worse flow area and overheat area can be clearly presented.An index of micro thermal environment for the air distribution evaluation was established.Depending on a certain residential district planning model,from the air parameters of the micro environment at any location within the residential district,such as air velocity and air temperature,the index of micro thermal environment was obtained by certain principles and data processing process.By this index,the residential district planning scheme was evaluated corresponding to the thermal characteristics of the residential district.If this index is not good enough or unsatisfied,the residential district planning idea and process can be changed or improved accordingly in order to get a better thermal characteristics of the residential district judged by the established evaluation index system.展开更多
Considering some drawbacks of the mainstream approach to environmental management (EM),the conception and basic idea of Participatory EM(PEM) are put forward.PEM possesses some main features and benefits that are supe...Considering some drawbacks of the mainstream approach to environmental management (EM),the conception and basic idea of Participatory EM(PEM) are put forward.PEM possesses some main features and benefits that are superior to the mainstream approach,but also faces the crucial constraint in decision-making.The dilemma can be effectively settled by applying an advanced decision-making support tool-group decision support system(GDSS).On the basis of recognizing the complex decision-making environment of PEM,this paper describes the components of GDSS for PEM(PEM-GDSS) and further discusses the basic requirement of PEM-GDSS.展开更多
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ...Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil.展开更多
There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previou...There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previous wireless sensor networks (WSN). Aiming at these problems, a greenhouse environmental parameter monitoring system had been designed based on internet of things technology in this paper. A set of control system with good robustness, strong adaptive ability and small overshoot was set up by combining the fuzzy proportion-integral-derivative (PID) control. The system was composed of a number of independent greenhouse monitoring systems. The server could provide remote monitoring access management services after the collected data were transmitted. The data transmission part of greenhouse was based on ZigBee networking protocol. And the data were sent to intelligent system via gateway connected to the internet. Compared to the classical PID control and fuzzy control, the fuzzy PID control could quickly and accurately adjust the corresponding parameters to the set target. The overshoot was also relatively small. The simulation results showed that the amount of overshoot was reduced 20% compared with classical PID control.展开更多
Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including e...Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including ergonomics,physiology and heat transfer is urgently required for the reduction of heat strain.The aim of this paper was to study the relationship among clothing thermal properties,physiological responses and environmental conditions.Three kinds of CPC were selected.Eight participants wore CPC and walked(4 km/h,two slopes with 5%and 10%)on a treadmill in an environment with(35±0.5)℃ and RH of(60±5)%.Core temperature,mean skin temperature,heart rate,heat storage and tolerance time were recorded and analyzed.Physiological responses were significantly affected by the clothing thermal properties and activity intensity in hot-humid environment.The obtained results can help further development of heat strain model.New materials with lower evaporative resistance and less weight are necessary to release the heat strain in hot-humid environments.展开更多
To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects wer...To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.展开更多
The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results...The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results show that As, Cd, Pb and Zn are major contaminants in sediments, and average concentrations of these elements significantly exceed both the Control Standards for Pollutants in Sludge of China (GB4284-84) for agricultural use in acidic soils and the effect range median (ERM) values. The average concentrations of As, Cd and Pb in the river water slightly exceed the limit of Surface Water Environment Quality Standard (GB3838-2002). The concentrations of As and Cr in depth profiles extensively change, but slight changes are observed in Pb and Zn. Cd and Zn in most sediment samples can easily enter the food-chain and bring possible ecotoxicological risk to organisms living in sediments according to the risk assessment code.展开更多
With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental qua...With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.展开更多
The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick...The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.展开更多
High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train su...High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train surface. This will have a great impact on the train stability, running drag and surface corrosion. Numerical simulation method of SLAHT in sand environment is studied. The velocity and mass flow rate models of saltation and suspension sand particles and the calculation model of SLAHT caused by sand particles hitting train surface are established. The discrete phase method is adopted for numerical simulating the process of saltation and suspension sand particles moving to train surface and generating sand load. By comparison with the field tests, the numerical simulation reliability is analysed. The theoretical formula of SLAHT changing with cross-wind and train speed is proposed. SLAHT changing law is analyzed. Research results indicate that SLAHT changing with cross-wind and train speed is a quadratic relationship. When train speed is constant, SLAHT increases quadratically with cross-wind speed improvement. When cross-wind speed is constant, SLAHT increases quadratically with train speed improvement.展开更多
基金National Natural Science Foundation of China(No.41967035)。
文摘Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.
文摘To compare the suitable working conditions of polypropylene(PP)and polycaprolactam(PA6)materials in actual use in automobiles,the effects of different temperature aging and different reagents on the mechanical properties of the two materials,such as tensile,bending,compression,and impact were studied.The results indicate that the short⁃term low⁃temperature environment had no much effect on the mechanical properties of PP and PA6.After long⁃term thermal aging at 80℃,the strength of PP and PA6 increased while their toughness decreased.After short⁃term thermal aging at 120℃,PP strength decreases and toughness increases,while PA6 strength increases and toughness decreases.The soaking of glass water and car shampoo had no much effect on the mechanical properties of PP,but had a significant impact on the mechanical properties of PA6.With the increase of soaking time,the strength of PA6 significantly decreases and the toughness significantly increases.The soaking of 95#gasoline had no much effect on the mechanical properties of PA6,but has a significant impact on the mechanical properties of PP.After 720 h of soaking,the retention rates of the tensile strength,bending strength,and compressive strength of PP were all less than 80%,while the retention rate of the impact strength of the cantilever beam was 160.4%.
基金supported by the Ministry of Industry and Information Technology(No.23100002022102001)。
文摘Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
基金supported by the Southwest Institute of Technology and Engineering cooperation fund(Grant No.HDHDW5902020104)。
文摘The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learning(ML)-based prediction method to study the evolution of the mechanical properties of Al-Li alloys in the marine environment.We obtained the mechanical properties of Al-Li alloy samples under uniaxial tensile deformation at different exposure times through Marine exposure experiments.We obtained the strain evolution by digital image correlation(DIC).The strain field images are voxelized using 2D-Convolutional Neural Networks(CNN)autoencoders as input data for Long Short-Term Memory(LSTM)neural networks.Then,the output data of LSTM neural networks combined with corrosion features were input into the Back Propagation(BP)neural network to predict the mechanical properties of Al-Li alloys.The main conclusions are as follows:1.The variation law of mechanical properties of2297-T8 in the Marine atmosphere is revealed.With the increase in outdoor exposure test time,the tensile elastic model of 2297-T8 changes slowly,within 10%,and the tensile yield stress changes significantly,with a maximum attenuation of 23.6%.2.The prediction model can predict the strain evolution and mechanical response simultaneously with an error of less than 5%.3.This study shows that a CNN/LSTM system based on machine learning can be built to capture the corrosion characteristics of Marine exposure experiments.The results show that the relationship between corrosion characteristics and mechanical response can be predicted without considering the microstructure evolution of metal materials.
基金Project(ZR2023ME063)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(121311KYSB20210005)supported by the Overseas Science and Education Cooperation Center Deployment Project,ChinaProject supported by the Qingdao Expert Workstation for Intelligent Anticorrosion for Water Diversion Project,China。
文摘Urea,paracetamol and glutamine(based on the expired drugs)were selected as vapor-phase corrosion inhibitors(VCIs)to study their corrosion protection effect on red copper in simulated marine atmospheric environment by using weight loss,electrochemical measurement techniques(specially designed electrochemical testing device for simulating marine atmospheric environments)and surface morphology characterization analysis(SEM/EDS,XRD,RAMAN,XPS).Weight loss results show that the three corrosion inhibitors have good corrosion inhibition effect on red copper,and the corrosion inhibition efficiency in the order of glutamine(83.62%)>urea(68.46%)>paracetamol(61.47%).Surface morphology characterization analysis provides evidence of adsorption of corrosion inhibitors molecules on the red copper surface,thus forming a protective film that blocked the red copper surface from the aggressive chloride ion attack.
基金This work was supported by the Key Research and Development(R&D)Plan of Heilongjiang Province of China(JD22A001).
文摘With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.
文摘A brief review of the basic terminology on simulation, simulation life-cycle activities such as model-based activities, behavior-oriented activities, and quality assurance activities is given. Then, the challenges and opportunities for the advancement of the state-of-the-art in simulation environments are discussed under the following headings: modelling environments, simulation environments, mixed simulation environments, and comprehensive simulation environments.
文摘This paper focused on residential district planning process.Using GIS and SketchUp software,a common digital relief map model of a residential district was created,and the air distribution(both velocity and temperature)within this residential district was established by CFD simulation.So,the velocity and temperature of the air at any location within the residential district,as well as the worse flow area and overheat area can be clearly presented.An index of micro thermal environment for the air distribution evaluation was established.Depending on a certain residential district planning model,from the air parameters of the micro environment at any location within the residential district,such as air velocity and air temperature,the index of micro thermal environment was obtained by certain principles and data processing process.By this index,the residential district planning scheme was evaluated corresponding to the thermal characteristics of the residential district.If this index is not good enough or unsatisfied,the residential district planning idea and process can be changed or improved accordingly in order to get a better thermal characteristics of the residential district judged by the established evaluation index system.
文摘Considering some drawbacks of the mainstream approach to environmental management (EM),the conception and basic idea of Participatory EM(PEM) are put forward.PEM possesses some main features and benefits that are superior to the mainstream approach,but also faces the crucial constraint in decision-making.The dilemma can be effectively settled by applying an advanced decision-making support tool-group decision support system(GDSS).On the basis of recognizing the complex decision-making environment of PEM,this paper describes the components of GDSS for PEM(PEM-GDSS) and further discusses the basic requirement of PEM-GDSS.
基金Projects(51478484,51308551,51678571)supported by the National Natural Science Foundation of ChinaProject(2016zzts063)supported by Fundamental Research Funds for the Central Universities,China
文摘Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil.
基金Supported by the 13th Five-year National Key R&D Program:Development and Verification of Information Perception and Environment Intelligent Control System for Dairy Cattle and Beef Cattle(2016YFD0700204-02)Quality and Brand Construction of "Internet+County Characteristic Agricultural Products"(ZY17C06)
文摘There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previous wireless sensor networks (WSN). Aiming at these problems, a greenhouse environmental parameter monitoring system had been designed based on internet of things technology in this paper. A set of control system with good robustness, strong adaptive ability and small overshoot was set up by combining the fuzzy proportion-integral-derivative (PID) control. The system was composed of a number of independent greenhouse monitoring systems. The server could provide remote monitoring access management services after the collected data were transmitted. The data transmission part of greenhouse was based on ZigBee networking protocol. And the data were sent to intelligent system via gateway connected to the internet. Compared to the classical PID control and fuzzy control, the fuzzy PID control could quickly and accurately adjust the corresponding parameters to the set target. The overshoot was also relatively small. The simulation results showed that the amount of overshoot was reduced 20% compared with classical PID control.
文摘Heat strain experienced by individuals wearing chemical protective clothing(CPC)is severe and dangerous especially in hot-humid environment.The development of material science and interdisciplinary studies including ergonomics,physiology and heat transfer is urgently required for the reduction of heat strain.The aim of this paper was to study the relationship among clothing thermal properties,physiological responses and environmental conditions.Three kinds of CPC were selected.Eight participants wore CPC and walked(4 km/h,two slopes with 5%and 10%)on a treadmill in an environment with(35±0.5)℃ and RH of(60±5)%.Core temperature,mean skin temperature,heart rate,heat storage and tolerance time were recorded and analyzed.Physiological responses were significantly affected by the clothing thermal properties and activity intensity in hot-humid environment.The obtained results can help further development of heat strain model.New materials with lower evaporative resistance and less weight are necessary to release the heat strain in hot-humid environments.
基金Project(50838009) supported by the National Natural Science Foundation of China
文摘To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.
基金Project (20507022) supported by the National Natural Science Foundation of ChinaProject (EREH050303) supported by the Foundation of Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health
文摘The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results show that As, Cd, Pb and Zn are major contaminants in sediments, and average concentrations of these elements significantly exceed both the Control Standards for Pollutants in Sludge of China (GB4284-84) for agricultural use in acidic soils and the effect range median (ERM) values. The average concentrations of As, Cd and Pb in the river water slightly exceed the limit of Surface Water Environment Quality Standard (GB3838-2002). The concentrations of As and Cr in depth profiles extensively change, but slight changes are observed in Pb and Zn. Cd and Zn in most sediment samples can easily enter the food-chain and bring possible ecotoxicological risk to organisms living in sediments according to the risk assessment code.
基金Shanghai Leading Academic Discipline Project (T0502)Shanghai Municipal Educational Commission Project (05EZ32).
文摘With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.
基金Project(2011BAJ03B13) supported by the National Key Technologies R&D Program of China
文摘The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.
文摘High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train surface. This will have a great impact on the train stability, running drag and surface corrosion. Numerical simulation method of SLAHT in sand environment is studied. The velocity and mass flow rate models of saltation and suspension sand particles and the calculation model of SLAHT caused by sand particles hitting train surface are established. The discrete phase method is adopted for numerical simulating the process of saltation and suspension sand particles moving to train surface and generating sand load. By comparison with the field tests, the numerical simulation reliability is analysed. The theoretical formula of SLAHT changing with cross-wind and train speed is proposed. SLAHT changing law is analyzed. Research results indicate that SLAHT changing with cross-wind and train speed is a quadratic relationship. When train speed is constant, SLAHT increases quadratically with cross-wind speed improvement. When cross-wind speed is constant, SLAHT increases quadratically with train speed improvement.