The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditi...The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China.展开更多
Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression...Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression,Hetao Basin,are studied.The results are obtained in four aspects.First,the inland saline lacustrine high-quality source rocks developed in the Paleogene in the Linhe Depression have the characteristics of early maturity,early expulsion,high hydrocarbon yield,and continuous and efficient hydrocarbon generation,providing an important resource basis for the formation of ultra-high pressure and high-yield reservoirs.Second,the weak compaction,early charging,and weak cementation for pore-preserving,together with the ultra-high pressure for pore-preserving and fracture expansion to improve the permeability,leads to the development of high-quality reservoirs with medium porosity(greater than 15%)and medium permeability(up to 226×10^(-3)μm^(2))in the ultra-deep strata(deeper than 6500 m),which represents a greatly expanded space for oil and gas exploration.Third,the Linhe Formation adjacent to the trough exhibits a low net-to-gross(NTG)and good reservoir-caprock assemblage,and it is overlaid by very thick high-quality mudstone caprock,which are conducive to the continuous and efficient hydrocarbon generation and pressurization and the formation of ultra-high pressure oil and gas reservoirs.Fourth,the most favorable targets for ultra-deep exploration are the zones adjacent to the hydrocarbon generating center of the Paleogene Linhe Formation and with good tectonic setting and structural traps,mainly including the Xinglong faulted structural zone and the Nalinhu faulted buried-hill zone.The significant breakthrough of ultra-deep oil and gas exploration in the Linhe Depression reveals the good potential of ultra-deep clastic rocks in this area,and provides valuable reference for oil and gas exploration of ultra-deep clastic rocks in other areas.展开更多
Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of th...Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin are clarified,and a shale oil enrichment model is established.The results show that the enrichment of shale oil in the Fengcheng Formation in the Mahu Sag is controlled by the organic abundance,organic type,reservoir capacity and the amount of migration hydrocarbon in shale.The abundance of organic matter provides the material basis for shale oil enrichment,and the shales containing typesⅠandⅡorganic matters have good oil content.The reservoir capacity controls shale oil enrichment.Macropores are the main space for shale oil enrichment in the Fengcheng Formation,and pore size and fracture scale directly control the degree of shale oil enrichment.The migration of hydrocarbons in shale affects shale oil enrichment.The shale that has expelled hydrocarbons has poor oil content,while the shale that has received hydrocarbons migrated from other strata has good oil content.Lithofacies reflect the hydrocarbon generation and storage capacity comprehensively.The laminated felsic shale,laminated lime-dolomitic shale and thick-layered felsic shale have good oil content,and they are favorable lithofacies for shale oil enrichment.Under the control of these factors,relative migration of hydrocarbons occurred within the Fengcheng shale,which leads to the the difference in the enrichment process of shale oil.Accordingly,the enrichment mode of shale oil in Fengcheng Formation is established as"in-situ enrichment"and"migration enrichment".By superimposing favorable lithofacies and main controlling factors of enrichment,the sweet spot of shale oil in the Fengcheng Formation can be selected which has great significance for the exploration and development of shale oil.展开更多
Few studies have systematically investigated the factors controlling organic matter enrichment in shales from the Qiongzhusi Formation, within and surrounding the Sichuan Basin, under different depositional environmen...Few studies have systematically investigated the factors controlling organic matter enrichment in shales from the Qiongzhusi Formation, within and surrounding the Sichuan Basin, under different depositional environments. This has resulted in different academic understandings and limited clarity on the mechanisms of organic matter enrichment. On this premise, in this study, the basic geological characteristics and depositional paleoenvironments of shales along the passive continental margin, the western Hubei Trough, and the western Sichuan Trough were compared and analyzed using core, outcrop, and mineral testing. Furthermore, data from organic geochemical and elemental analyses were utilized to investigate the different enrichment mechanisms and formation modes of the organic matter in different periods. The results reveal that the organic matter enrichment in this region should be mainly influenced by the preservation conditions, paleo-productivity, and terrigenous input. However, there were clear differences in the main controlling factors in the different periods. In the Q1 phase, the region had a high sea level, had the strongest rifting, had the largest accommodation space, and exhibited characteristics of low terrestrial input and bottom water hypoxia. The changes in the paleo-productivity caused by upwelling currents were the main factors controlling the variations in the organic matter enrichment. In the Q2 phase, the weakened decreasing sea level co-occurred with a reduction in the accommodation space across the region. The organic matter enrichment was significantly controlled by the paleo-productivity, preservation conditions, and terrigenous inputs, and the organic matter enrichment conditions deteriorated from the passive continental margin to the western Hubei Trough and western Sichuan Trough. The total organic carbon(TOC) content of the shale decreased significantly. In the Q3 phase, the entire region entered an infilling stage, which was dominated by an oxygen-rich environment,and the preservation conditions were the decisive factor controlling the organic matter enrichment. The TOC content was low overall, and there were no evident differences across the different zones.展开更多
Inductively coupled plasma mass spectrometry(ICP-MS) was used to determine the concentration of Pb in atmospheric particulate samples,and the enrichment factor was calculated.The causes of the results were also discus...Inductively coupled plasma mass spectrometry(ICP-MS) was used to determine the concentration of Pb in atmospheric particulate samples,and the enrichment factor was calculated.The causes of the results were also discussed.展开更多
A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this...A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this layer can form large-scale oil enrichment of industrial value,comprehensive geological research and exploration practice have been carried out for years and obtained the following important geologic findings.Firstly,widely distributed black shale and dark mudstone with an average organic matter abundance of 13.81%and 3.74%,respectively,lay solid material foundation for the formation of shale oil.Secondly,sandy rocks sandwiched in thick organic-rich shale formations constitute an oil-rich"sweet spot",the average thickness of thin sandstone is 3.5 m.Thirdly,fine-grained sandstone and siltstone reservoirs have mainly small pores of 2–8μm and throats of 20–150 nm in radius,but with a large number of micro-pores and nano-throats,through fracturing,the reservoirs can provide good conductivity for the fluid in it.Fourthly,continued high-intensity hydrocarbon generation led to a pressure difference between the source rock and thin-layer reservoir of up to 8–16 MPa during geological history,driven by the high pressure,the oil charged into the reservoirs in large area,with oil saturation reaching more than 70%.Under the guidance of the above theory,in 2019,the Qingcheng Oilfield with geologic oil reserves of billion ton order was proved in the classⅠmulti-stage superimposed sandstone shale reservoir of Chang 7 Member by the Changqing Oilfield Branch through implementation of overall exploration and horizontal well volume fracturing.Two risk exploration horizontal wells were deployed for the classⅡthick layer mud shale interbedded with thin layers of silt-and fine-sandstones reservoir in the Chang 73 submember,and they were tested high yield oil flows of more than 100 tons per day,marking major breakthroughs in petroleum exploration in classⅠshale reservoirs.The new discoveries have expanded the domain of unconventional petroleum exploration.展开更多
基金Supported by the National Natural Science Foundation of China(U22B6004)the PetroChina Research Institute of Petroleum Exploration&Development Project(2022yjcq03).
文摘The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China.
基金Supported by the China National Petroleum Corporation(CNPC)Project(2023ZZ14-01)。
文摘Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression,Hetao Basin,are studied.The results are obtained in four aspects.First,the inland saline lacustrine high-quality source rocks developed in the Paleogene in the Linhe Depression have the characteristics of early maturity,early expulsion,high hydrocarbon yield,and continuous and efficient hydrocarbon generation,providing an important resource basis for the formation of ultra-high pressure and high-yield reservoirs.Second,the weak compaction,early charging,and weak cementation for pore-preserving,together with the ultra-high pressure for pore-preserving and fracture expansion to improve the permeability,leads to the development of high-quality reservoirs with medium porosity(greater than 15%)and medium permeability(up to 226×10^(-3)μm^(2))in the ultra-deep strata(deeper than 6500 m),which represents a greatly expanded space for oil and gas exploration.Third,the Linhe Formation adjacent to the trough exhibits a low net-to-gross(NTG)and good reservoir-caprock assemblage,and it is overlaid by very thick high-quality mudstone caprock,which are conducive to the continuous and efficient hydrocarbon generation and pressurization and the formation of ultra-high pressure oil and gas reservoirs.Fourth,the most favorable targets for ultra-deep exploration are the zones adjacent to the hydrocarbon generating center of the Paleogene Linhe Formation and with good tectonic setting and structural traps,mainly including the Xinglong faulted structural zone and the Nalinhu faulted buried-hill zone.The significant breakthrough of ultra-deep oil and gas exploration in the Linhe Depression reveals the good potential of ultra-deep clastic rocks in this area,and provides valuable reference for oil and gas exploration of ultra-deep clastic rocks in other areas.
文摘Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin are clarified,and a shale oil enrichment model is established.The results show that the enrichment of shale oil in the Fengcheng Formation in the Mahu Sag is controlled by the organic abundance,organic type,reservoir capacity and the amount of migration hydrocarbon in shale.The abundance of organic matter provides the material basis for shale oil enrichment,and the shales containing typesⅠandⅡorganic matters have good oil content.The reservoir capacity controls shale oil enrichment.Macropores are the main space for shale oil enrichment in the Fengcheng Formation,and pore size and fracture scale directly control the degree of shale oil enrichment.The migration of hydrocarbons in shale affects shale oil enrichment.The shale that has expelled hydrocarbons has poor oil content,while the shale that has received hydrocarbons migrated from other strata has good oil content.Lithofacies reflect the hydrocarbon generation and storage capacity comprehensively.The laminated felsic shale,laminated lime-dolomitic shale and thick-layered felsic shale have good oil content,and they are favorable lithofacies for shale oil enrichment.Under the control of these factors,relative migration of hydrocarbons occurred within the Fengcheng shale,which leads to the the difference in the enrichment process of shale oil.Accordingly,the enrichment mode of shale oil in Fengcheng Formation is established as"in-situ enrichment"and"migration enrichment".By superimposing favorable lithofacies and main controlling factors of enrichment,the sweet spot of shale oil in the Fengcheng Formation can be selected which has great significance for the exploration and development of shale oil.
基金supported by the Hubei Province Natural Science Geological Innovation Development Joint Funding Project (2024AFD388)。
文摘Few studies have systematically investigated the factors controlling organic matter enrichment in shales from the Qiongzhusi Formation, within and surrounding the Sichuan Basin, under different depositional environments. This has resulted in different academic understandings and limited clarity on the mechanisms of organic matter enrichment. On this premise, in this study, the basic geological characteristics and depositional paleoenvironments of shales along the passive continental margin, the western Hubei Trough, and the western Sichuan Trough were compared and analyzed using core, outcrop, and mineral testing. Furthermore, data from organic geochemical and elemental analyses were utilized to investigate the different enrichment mechanisms and formation modes of the organic matter in different periods. The results reveal that the organic matter enrichment in this region should be mainly influenced by the preservation conditions, paleo-productivity, and terrigenous input. However, there were clear differences in the main controlling factors in the different periods. In the Q1 phase, the region had a high sea level, had the strongest rifting, had the largest accommodation space, and exhibited characteristics of low terrestrial input and bottom water hypoxia. The changes in the paleo-productivity caused by upwelling currents were the main factors controlling the variations in the organic matter enrichment. In the Q2 phase, the weakened decreasing sea level co-occurred with a reduction in the accommodation space across the region. The organic matter enrichment was significantly controlled by the paleo-productivity, preservation conditions, and terrigenous inputs, and the organic matter enrichment conditions deteriorated from the passive continental margin to the western Hubei Trough and western Sichuan Trough. The total organic carbon(TOC) content of the shale decreased significantly. In the Q3 phase, the entire region entered an infilling stage, which was dominated by an oxygen-rich environment,and the preservation conditions were the decisive factor controlling the organic matter enrichment. The TOC content was low overall, and there were no evident differences across the different zones.
文摘Inductively coupled plasma mass spectrometry(ICP-MS) was used to determine the concentration of Pb in atmospheric particulate samples,and the enrichment factor was calculated.The causes of the results were also discussed.
基金Supported by the China National Science and Technology Major Project(2016ZX05050)the National Key Basic Research and Development Program(973 Program),China(2014CB239003)
文摘A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this layer can form large-scale oil enrichment of industrial value,comprehensive geological research and exploration practice have been carried out for years and obtained the following important geologic findings.Firstly,widely distributed black shale and dark mudstone with an average organic matter abundance of 13.81%and 3.74%,respectively,lay solid material foundation for the formation of shale oil.Secondly,sandy rocks sandwiched in thick organic-rich shale formations constitute an oil-rich"sweet spot",the average thickness of thin sandstone is 3.5 m.Thirdly,fine-grained sandstone and siltstone reservoirs have mainly small pores of 2–8μm and throats of 20–150 nm in radius,but with a large number of micro-pores and nano-throats,through fracturing,the reservoirs can provide good conductivity for the fluid in it.Fourthly,continued high-intensity hydrocarbon generation led to a pressure difference between the source rock and thin-layer reservoir of up to 8–16 MPa during geological history,driven by the high pressure,the oil charged into the reservoirs in large area,with oil saturation reaching more than 70%.Under the guidance of the above theory,in 2019,the Qingcheng Oilfield with geologic oil reserves of billion ton order was proved in the classⅠmulti-stage superimposed sandstone shale reservoir of Chang 7 Member by the Changqing Oilfield Branch through implementation of overall exploration and horizontal well volume fracturing.Two risk exploration horizontal wells were deployed for the classⅡthick layer mud shale interbedded with thin layers of silt-and fine-sandstones reservoir in the Chang 73 submember,and they were tested high yield oil flows of more than 100 tons per day,marking major breakthroughs in petroleum exploration in classⅠshale reservoirs.The new discoveries have expanded the domain of unconventional petroleum exploration.