期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Energy dissipation mechanism and ballistic characteristic optimization in foam sandwich panels against spherical projectile impact 被引量:1
1
作者 Jianqiang Deng Tao Liu +4 位作者 Liming Chen Xin Pan Jingzhe Wang Shaowei Zhu Weiguo Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期108-122,共15页
This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on th... This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application. 展开更多
关键词 Sandwich panel Numerical simulation Ballistic resistance Specific penetration energy energy analysis
在线阅读 下载PDF
Stability and reinforcement analysis of rock slope based on elasto-plastic finite element method 被引量:3
2
作者 刘耀儒 武哲书 +2 位作者 常强 李波 杨强 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2739-2751,共13页
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional... The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China. 展开更多
关键词 stability analysis rock slope plastic complementary energy(PCE) unbalanced forces elasto-plasticity FEM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部