We report on the auditory Hopf amplification contributed by the electrical energy of the hair cell during its bundle deflecting. An energy method to calculate the active force is adopted according to the electrical en...We report on the auditory Hopf amplification contributed by the electrical energy of the hair cell during its bundle deflecting. An energy method to calculate the active force is adopted according to the electrical energy consumption of the hair cell. After some experimental data was analyzed and simulated, we find that the electrical energy determines the value of the active force and enlarges the mechanical response of the hair bundle. This amplification is controlled by the cell voltage and makes the sensor a Hopf vibrator with hearing nonlinear characteristics. A velocity-dependent active force derived previously from the force-gating channel operation strongly reinforces our conclusion.展开更多
We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed...We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator.The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns.The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24%in the main amplifier.The M^(2)parameter of the output laser is<1.4.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374118 and 90820001the Science Foundation of Hubei Province under Grant No 2013CFB289
文摘We report on the auditory Hopf amplification contributed by the electrical energy of the hair cell during its bundle deflecting. An energy method to calculate the active force is adopted according to the electrical energy consumption of the hair cell. After some experimental data was analyzed and simulated, we find that the electrical energy determines the value of the active force and enlarges the mechanical response of the hair bundle. This amplification is controlled by the cell voltage and makes the sensor a Hopf vibrator with hearing nonlinear characteristics. A velocity-dependent active force derived previously from the force-gating channel operation strongly reinforces our conclusion.
基金Project supported by the National National Science Foundation of China(Grant Nos.12004262 and 62005184)the Natural Science Foundation of Top Talent of SZTU(Grant No.202024555101039)。
文摘We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator.The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns.The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24%in the main amplifier.The M^(2)parameter of the output laser is<1.4.