期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
A new electromagnetic oscillation phenomenon on vanadium-compensationsemi-insulating 4H-SiC PCSS
1
作者 Lin Zhouyang Chen Zhipeng +7 位作者 Sun Qian Zheng Zhong Xu Kun Jiang Shuqing Zhang Yuming Wang Yutian Hu Yanfei Guo Hui 《强激光与粒子束》 北大核心 2025年第5期112-118,共7页
Constructing a photoconductive semiconductor switch (PCSS)-metal coil structure, we discovered anew phenomenon of electromagnetic oscillation in vanadium-compensation semi-insulating (VCSI) PCSS. Here thePCSS responds... Constructing a photoconductive semiconductor switch (PCSS)-metal coil structure, we discovered anew phenomenon of electromagnetic oscillation in vanadium-compensation semi-insulating (VCSI) PCSS. Here thePCSS responds to laser pulse and high-voltage signal while the metal coil generates an oscillating voltage pulseenvelope signal. The generation of this oscillating signal is not related to the input bias voltage of the PCSS, the pulsecircuit components, or the electrode structure of the PCSS, rather it is related to the output characteristic of the PCSS.This physical phenomenon can be explained using the current surge model in photoconducting antenna. Preparingohmic contact electrode on the silicon carbide material forms the PCSS, which generates a large number ofphotogenerated carriers when ultra-fast laser pulses irradiate the surface of the material and Simultaneously applies abias voltage signal between the electrode. At this time inside the PCSS the electric field causes the transient current,radiating electromagnetic wave to the metal coil to generate oscillating signal. 展开更多
关键词 VCSI 4H-SiC PCSS electromagnetic oscillation current surge model
在线阅读 下载PDF
Construction of 1D Mn_(x)O_(y)/C@Fe_(3)O_(4) Heterostructure for Ultralight Broadband Electromagnetic Wave Absorption
2
作者 SONG Zhiming LIU Bin +2 位作者 YI Peng HAN Xuhui LIU Xiaofang 《陶瓷学报》 北大核心 2025年第4期729-741,共13页
[Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broad... [Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broadband absorbers remains a challenge in terms of practical applications.EMW absorbing materials primarily rely on the magnetic loss of magnetic materials and/or the dielectric loss of dielectric materials to convert EMW energy into thermal energy for dissipation.Among various magnetic materials,Fe_(3)O_(4) plays an irreplaceable role in EMW absorption due to its high saturation magnetization,low cost and compatible dielectric loss in the gigahertz frequency range.Nevertheless,the high density,large matching thickness and narrow absorption bandwidth of Fe_(3)O_(4) pose significant challenges for practical applications.In contrast,one-dimensional(1D)structures not only retain the characteristic properties of lightweight,chemical stability and high dielectric loss,but also exhibit anisotropic structures and large aspect ratios.Additionally,researchers have found that the minimum reflection loss(RL)of hollow carbon materials with mesopores is nearly four times that of non-porous hollow carbon materials and nine times that of dense carbon materials.According to Maxwell's EMW theory,composites consisting of Fe_(3)O_(4) and one-dimensional(1D)mesoporous carbon materials can leverage their respective advantages by optimizing the composition and structure of the composites to balance u,and Er,thereby enhancing EMW absorption performance.Additionally,numerous studies have demonstrated that composites composed of multi-component heterostructures significantly enhance the EAB.This enhancement is primarily ascribed to the numerous interface polarization losses generated by the additional heterostructure interfaces,which also improve the overall impedance matching of the composites.In this study,we leverage the advantages of magnetic/carbon composites,one-dimensional(1D)mesoporous carbon and multi-component heterostructures to prepare a composite of 1D mesoporous carbon-coated manganese oxide(Mn_(3)O_(4) and MnO,denoted as Mn_(x)O_(y))embedded with Fe_(3)0_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4)).This composite was synthesized and its formation mechanism and microstructure were analyzed in detail.At the same time,the influence of this Mn_(x)O_(y)/C@Fe_(3)O_(4) structure on EMW properties and absorbing performance was further discussed.[Methods]Firstly,MnO_(2) nanowires were synthesized by using a simple hydrothermal method.Then,the MnO_(2) nanowires served as templates for the synthesis of MnO_(2)/PDA@Fe^(3+)composites through the in-situ polymerization of dopamine and Fe^(3+)adsorption.Finally,1D mesoporous carbon-coated manganese oxide composite embedded with Fe_(3)O_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4))composites were obtained after heat treatment at 550℃ in N_(2).The crystal structure of the samples was analyzed using X-ray diffractometer with Cu Ka irradiation.Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(TEM)were used to observe microstructure and morphology of the samples.Nitrogen sorption measurements were obtained at 77 K on a Quantachrome surface area and pore size analyzer to measure the specific surface area and pore size distribution.XPS analysis was performed on X-ray photoelectron spectrometer with monochromatic Al Ka radiation.Magnetization curves of the samples were recorded with a Quantum Design physical property measurement system(PPMS-9)at room temperature.The electromagnetic parameters of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites were measured using an Agilent N5230C network analyzer in the frequency range of 2-18 GHz.For electromagentic testing,the Mn,Oy/C@Fe34 composites and paraffin wax were mixed at 50°C according to the mass ratio of 15 wt.%,20 wt.%and 25 wt.%,and pressed in a special mold to make coaxial rings(inner diameter=3.04 mm,outer diameter-7 mm),which were denoted as S-1,S-2 and S-3,respectively.[Results]SEM images illustrate the preparation process of iD mesoporous carbon-coated manganese oxide embedded with Fe3O4 nanoparticles composites(Mn_(x)O_(y)/C@Fe_(3)O_(4)).Most of the manganese oxide(Mn,Oy)was reduced to granular after heat treatment,while the outer carbon layer remains its 1D morphology and the carbon layer is interspersed with Fe_(3)O_(4) nanoparticles.The diffraction peaks of MnO_(2) nanowires align well with the body-centered tetragonal a-MnO2.For the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites,the signals of α-MnO_(2) disappears,followed by the emergence of Mn_(3)O_(4) and three prominent diffraction peaks for the cubic MnO.In addition,four weak diffraction peaks correspond to the magnetite Fe_(3)O_(4),consistent with the HRTEM results.The corresponding nitrogen adsorption-desorption isotherm and pore size distribution curve are presented to further analyze the mesoporous structure of composite.The surface composition and element valence states of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite were investigated by using XPS.The polarization relaxation processes were analyzed according to the Debye theory which describes the relationship between e'and e".Besides the polarization loss,the contribution of the conduction loss plays an important role for the overall dielectric loss.The magnetization curve of Mn_(x)O_(y)/C@Fe_(3)O_(4) exhibits typical ferromagnetic behavior.The permittivity parameter(Co),defined as Co=u"(u)^(-2)f^(-1) determine the contribution of eddy current effect to magnetic loss.The tand values are all larger than those of tand,for the three samples,indicating that the loss capacity of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites is mainly derived from the dielectric loss.Although tand,is smaller,it plays an important role in improving the impedance matching of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites.When the filler loading is 15 wt.%,the RL of sample S-1 is about-10.0 dB at the thickness of 1.5 mm with narrow EAB.As the filler loading increased to 20 wt.%,the RL of sample S-2 reached-62.0 dB at a thickness of 2.2 mm and the EAB was 6.4 GHz at a small thickness of 1.7 mm.When the filler loading is further increased to 25 wt.%,the microwave absorption performance of sample S3 decreased significantly with a little region of RL<-10.0 dB at the thickness of 5.0 mm.The values of[Zin/Zol of the three samples at thicknesses of 1.5-5.0 mm were calculated.Due to good impedance matching of S-2,the incident EMW can enter the material and then can be dissipated through dipole polarization loss,interface polarization loss,conduction loss,eddy current loss and natural ferromagnetic resonance loss.[Conclusions]1D Mn_(x)O_(y)/C@Fe_(3)O_(4) was synthesized via a process involving the coating of polydopamine,adsorption of Fe(ll)salts and heat treatment,using MnO_(2) nanowires as templates.The multi-component heterostructure of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite(Mn_(3)O_(4),MnO,Fe_(3)O_(4),and C)enhances the interfacial interactions between the different phases,providing increased interface polarization loss under the action of an alternating electromagnetic field.The numerous defects and terminal groups in the mesoporous carbon provide abundant dipole polarization centers.Additionally,the presence of mesopores reduces the weight of the material while increasing the multiple scattering losses of the electromagnetic waves within the material.The ID carbon structure in the matrix forms a conductive network between adjacent fibers,facilitating electron migration and transition,thereby enhancing conductive loss.The incorporation of magnetic Fe_(3)O_(4) nanoparticles introduces eddy current loss and natural ferromagnetic resonance loss,thus increasing magnetic loss.Moreover,the synergistic effect between dielectric and magnetic losses improves the impedance matching of the material,leading to excellent EMW absorption performance. 展开更多
关键词 electromagnetic wave absorbing materials impedance matching ultralight BROADBAND
在线阅读 下载PDF
Simulation and experimental study on the use of shaped charge jet as transient antennas for radiating electromagnetic pulses
3
作者 Jiahui Guo Bin Ma +2 位作者 Zhengxiang Huang Yong Peng Xin Jia 《Defence Technology(防务技术)》 2025年第5期260-274,共15页
In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a tran... In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna. 展开更多
关键词 Shaped charge Transient antenna electromagnetic pulse Radiated power Reconfigurable antenna
在线阅读 下载PDF
The Electromagnetic Compatibility and Distribution of Antenna System 被引量:1
4
作者 B. F Wang S. Z. adns & Y. L. Yao(Dept. of Elect. Eng., Beijing University of Aeronautics and Astronatutics, Beijing 100083) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第1期65-72,共8页
The mathematical model of electromagnetic compatibility and the distribution of aircraft antenna system have been investigated. The solutions of the antenna gain and electromagnetic interference margin in the regions ... The mathematical model of electromagnetic compatibility and the distribution of aircraft antenna system have been investigated. The solutions of the antenna gain and electromagnetic interference margin in the regions of low frequency, resonance and high frequency were discussed. By using the basic analytical method of the EMI margin the distributed antenna system can be determined. The main program flow chart of distributed antenna design were given, and illustrated with examples of the microstrip antennas. 展开更多
关键词 electromagnetic compatibility Distribution of antennas Aircraft antennas Microstrip Antennas
在线阅读 下载PDF
Trigger control characteristics of fuze-recoil simulation system based on electromagnetic launcher 被引量:1
5
作者 Wenhao Wang Shihua Bi +2 位作者 Hongjun Xiang Chao Zhan Xichao Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期563-571,共9页
Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the a... Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects. 展开更多
关键词 trigger control fuze-recoil simulation electromagnetic launcher
在线阅读 下载PDF
Cell-type continuous electromagnetic radiation system generating millimeter waves for active denial system applications 被引量:1
6
作者 Sun-Hong Min Ohjoon Kwon +17 位作者 Matlabjon Sattorov Seontae Kim In-Keun Baek Seunghyuk Park Ranjan Kumar Barik Anirban Bera Dongpyo Hong Seonmyeong Kim Bong Hwan Hong Chawon Park Sukhwal Ma Minho Kim Kyo Chul Lee Yong Jin Lee Han Byul Kwon Young Joon Yoo Sang Yoon Park Gun-Sik Park 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1895-1913,共19页
The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living orga... The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment. 展开更多
关键词 Millimeter waves Terahertz waves Coupled-cavity backward wave oscillator(CCBWO) Cell-type continuous electromagnetic radiation Active denial system(ADS) Directed-energy weapon(DEW)
在线阅读 下载PDF
Increasing both the electromagnetic shielding and thermal conductive properties of three-dimensional graphene-CNT-SiC hybrid materials 被引量:1
7
作者 FENG Fan HAN Zhi-dong +4 位作者 WEI Bing WANG Yang WANG Fei-zhou JIAO Yan-yan WANG Zhen-ting 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第6期1178-1190,共13页
During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilitie... During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance.Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes(CNTs)and SiC whiskers(3D graphene-CNT-SiC)were synthesized.Using an aqueous-phase reduction method for the self-assembly of the graphene oxide,a three-dimen-sional porous graphene structure was fabricated.SiC whiskers,inserted between the graphene layers,formed a framework for longit-udinal thermal conduction,while CNTs attached to the SiC surface,created a dendritic structure that increased the bonding between the SiC whiskers and graphene,improving dielectric loss and thermal conductivity.It was found that the thermal conductivity of the hybrid material reached 123 W·m^(-1)·K^(-1),with a shielding effectiveness of 29.3 dB when the SiC addition was 2%.This result indic-ates that 3D graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance. 展开更多
关键词 Thermal management electromagnetic Shielding 3D graphene Silicon carbide Carbon nanotubes
在线阅读 下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation 被引量:1
8
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
在线阅读 下载PDF
Fast measurement and prediction method for electromagnetic susceptibility of receiver 被引量:1
9
作者 CHEN Yan LU Zhonghao LIU Yunxia 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期275-285,共11页
Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequenc... Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized. 展开更多
关键词 electromagnetic susceptibility(EMS) RECEIVER dualchannel multi-frequency nonlinear response frequency domain power domain
在线阅读 下载PDF
Effect and mechanism of on-chip electrostatic discharge protection circuit under fast rising time electromagnetic pulse
10
作者 Mao Xinyi Chai Changchun +3 位作者 Li Fuxing Lin Haodong Zhao Tianlong Yang Yintang 《强激光与粒子束》 CAS CSCD 北大核心 2024年第10期44-52,共9页
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ... The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit. 展开更多
关键词 fast rising time electromagnetic pulse damage effect electrostatic discharge protection circuit damage location prediction
在线阅读 下载PDF
Reduced graphene oxide porous films containing SiC whiskers for constructing multilayer electromagnetic shields
11
作者 LI Jing Qi Yi-quan +3 位作者 ZHAO Shi-xiang QIU Han-xun YANG Jun-he YANG Guang-zhi 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第6期1191-1201,共11页
Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were p... Developing lightweight and flexible thin films for electromagnetic interference(EMI)shielding is of great importance.Porous thin films of reduced graphene oxide containing SiC whiskers(SiC@RGO)for EMI shielding were prepared by a two-step reduction of graphene oxide(GO),in which the two steps were chemical reduction by HI and the solid phase microwave irradiation.A significant increase of the film thickness from around 20 to 200μm was achieved due to the formation of a porous structure by gases released during the 3 s of solid phase microwave irradiation.The total shielding effectiveness(SET)and the reflective SE(SE_(R))of the SiC@RGO porous thin films depended on the GO/SiC mass ratio.The highest SET achieved was 35.6 dB while the SE_(R) was only 2.8 dB,when the GO/SiC mass ratio was 4∶1.The addition of SiC whiskers was critical for the multi-reflection,interfacial po-larization and dielectric attenuation of EM waves.A multilayer film with a gradient change of SE values was constructed using SiC@RGO porous films and multi-walled carbon nanotubes buckypapers.The highest SET of the multilayer films reached 75.1 dB with a SE_(R) of 2.7 dB for a film thickness of about 1.5 mm.These porous SiC@RGO thin films should find use in multilayer or sand-wich structures for EMI absorption in packaging or lining. 展开更多
关键词 GRAPHENE Thin films Silicon carbide whiskers electromagnetic interference shielding
在线阅读 下载PDF
A novel refined dynamic model of high-speed maglev train-bridge coupled system for random vibration and running safety assessment
12
作者 MAO Jian-feng LI Dao-hang +3 位作者 YU Zhi-wu CAI Wen-feng GUO Wei ZHANG Guang-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2532-2544,共13页
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b... Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval. 展开更多
关键词 maglev train-bridge interaction electromagnetic force-air gap model stochastic dynamic analysis running safety assessment probability density evolution method
在线阅读 下载PDF
A high output power 340 GHz balanced frequency doubler designed based on linear optimization method
13
作者 LIU Zhi-Cheng ZHOU Jing-Tao +5 位作者 MENG Jin WEI Hao-Miao YANG Cheng-Yue SU Yong-Bo JIN Zhi JIA Rui 《红外与毫米波学报》 北大核心 2025年第2期184-191,共8页
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ... In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%. 展开更多
关键词 linear optimization method(LOM) three-dimensional electromagnetic model(3D-EM) Harmonic impedance optimization Schottky planar diode Terahertz frequency doubler
在线阅读 下载PDF
Numerical simulation and experimental study on the characteristics of armature wear and contact process of small caliber railgun
14
作者 Huayi Zhang Benfeng Gu +1 位作者 Baoming Li Chunxia Yang 《Defence Technology(防务技术)》 2025年第7期180-191,共12页
During the electromagnetic railgun launch process,high temperature and high current conditions can lead to armature wear,affecting armature/rail contact and degrading launch performance.This paper starts with the anal... During the electromagnetic railgun launch process,high temperature and high current conditions can lead to armature wear,affecting armature/rail contact and degrading launch performance.This paper starts with the analysis of the metal liquid film formation at the armature/rail contact interface.1D and 3D models are developed based on the characteristic relational equation obtained from the melt liquid film model.These models incorporate thermodynamic equilibrium phase diagram,transient heat and mass transfer model,copper-aluminum alloy reaction model,nonlinear electrical conductivity relational equation and nonlinear thermal conductivity relational equation to analyze the temperature distribution and copper-aluminum intermetallic compounds(Cu-Al IMCs)formation in the melt liquid film.The wear mechanism and influence law of armature are explained in detail from different perspectives to un-derstand and predict the transition and gouging phenomena at the contact interface.The model's validity is confirmed by the results of electromagnetic launch experiments,providing insights for future structure design and material selection of the armature and rail. 展开更多
关键词 electromagnetic launch Armature/rail contact interface Metal liquid film Armature wear Transition GOUGING
在线阅读 下载PDF
Study, development and related application of a miniature compact pulsed power supply with high repetition frequency
15
作者 Zhangfei Wang Jian Liu +1 位作者 Chunxia Yang Baoming Li 《Defence Technology(防务技术)》 2025年第5期304-318,共15页
Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on... Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on compact and portable pulsed power supplies,the National Key Laboratory of Transient Physics(NKLTP)recently developed a pulsed power supply consisting of a set of compact pulse-forming units(PFU),each with a capacitor energy storage of 220 kJ.This integrated PPS comes with a complete system configuration,a miniature compact structure,a high rate of repetition,and high power,with energy storage density exceeding 1.2 MJ/m^(3).This paper describes the device-level design of the unit,the system layout,the control system,the thermal management system,and the experimental results of the pulsed power supply.The experimental results verified the good reliability of the PPS at high repetition rates with each unit module delivering an output current of more than 100 kA.Additionally,flexible current pulse shapes can be formed by setting the charging voltage and the trigger sequence of the PFUs.The pulse forming network(PFN)developed from these PFUs was successfully applied to electromagnetic launch. 展开更多
关键词 electromagnetic railgun Pulsed power supply Energy storage density Thermal management system Precision control system
在线阅读 下载PDF
Attitude estimation for spacecraft docking based on EMVS array via PARAFAC algorithm
16
作者 LIU Bingqi CHEN Guangdong +1 位作者 LIU Zhuhang SONG He 《Journal of Systems Engineering and Electronics》 2025年第3期623-633,共11页
A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the ... A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the two-dimensional direction-of-arrival(2D-DOA)and polarization angles,aiming to address the issues of incomplete,asynchronous,and inaccurate third-party reference used for attitude estimation in spacecraft docking missions by employing the electromagnetic wave’s three-dimensional(3D)wave structure as a complete third-party reference.Comparative analysis with state-ofthe-art algorithms shows significant improvements in estimation accuracy and computational efficiency with this algorithm.Numerical simulations have verified the effectiveness and superiority of this method.A high-precision,reliable,and cost-effective method for rapid spacecraft attitude estimation is provided in this paper. 展开更多
关键词 parallel factor(PARAFAC)analysis electromagnetic vector sensors attitude estimation state of polarization spacecraft docking
在线阅读 下载PDF
Dual circularly polarized monostatic STAR antenna with enhanced isolation
17
作者 XIE Mingcong WEI Xizhang +1 位作者 TANG Yanqun HU Dujuan 《Journal of Systems Engineering and Electronics》 2025年第1期73-81,共9页
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p... Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz. 展开更多
关键词 dual circularly polarization(CP) monostatic simultaneous transmit and receive(MSTAR) sequential rotation array(SRA) uniplanar compact electromagnetic band gap(UC-EBG) ring-shaped defected ground structure(RS-DGS)
在线阅读 下载PDF
Numerical simulation of dynamic large deformation and fracture damage for solid armature in electromagnetic railgun 被引量:11
18
作者 Qing-hua Lin Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期348-353,共6页
The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electr... The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical,thermal and mechanical process in the interior ballistic cycle.In this paper present,we first introduced a multi-physical field model of railgun,followed by several examples to investigate the launching process.Especially,we used the explicit finite element method,in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature.The results show that the dynamic mechanical process of armature is dependent on the armature geometry,material and exciting electric current.By the numerical simulation,the understanding of the fracture mechanism of solid armature was deepened. 展开更多
关键词 electromagnetic RAILGUN Solid ARMATURE FRACTURE EXPLICIT FINITE element Numerical simulation
在线阅读 下载PDF
Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing 被引量:13
19
作者 郝宽胜 黄松岭 +2 位作者 赵伟 段汝娇 王珅 《Journal of Central South University》 SCIE EI CAS 2011年第3期749-754,共6页
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a... Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected. 展开更多
关键词 metal material nondestructive testing electromagnetic acoustic transducer multi-field coupling Garlerkin method finite element
在线阅读 下载PDF
Research progress on advanced rail materials for electromagnetic railgun technology 被引量:9
20
作者 Hong-bin Xie Hui-ya Yang +5 位作者 Jian Yu Ming-yu Gao Jian-dong Shou You-tong Fang Jia-bin Liu Hong-tao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期429-439,共11页
Electromagnetic railgun attracts more and more attention due to its advantage in speed,cost,and obscurity.It is found that the rail should withstand huge mechanical and thermal shocks during the launching operation.Th... Electromagnetic railgun attracts more and more attention due to its advantage in speed,cost,and obscurity.It is found that the rail should withstand huge mechanical and thermal shocks during the launching operation.The forms of rail failure are accompanied by gouge,grooving,transition,and arc ablation,etc.The service life of the rail has become a bottleneck restricting the development of electromagnetic railgun technology.A series of researches are carried out to solve rail failure,including analysing the failure mechanism and using various advanced rail materials.This paper provides a comprehensive review of rail materials,including material composition,preparation,microstructure,and properties.We begin from a short background of the requirement of the rail material.Then a detailed investigation of rail materials is described,and the performances of those materials are introduced.Finally,further development prospect of rail material is discussed. 展开更多
关键词 STRENGTH CONDUCTIVITY electromagnetic railgun Copper alloys Rai
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部