Supercapacitors,also known as ultracapacitors or electrochemical capacitors,possess intriguing merits of high power density(10-100 times higher than that of batteries),long life expectancy(millions of cycles),wide ope...Supercapacitors,also known as ultracapacitors or electrochemical capacitors,possess intriguing merits of high power density(10-100 times higher than that of batteries),long life expectancy(millions of cycles),wide operation temperature range (-40℃ to 70℃),environmental friendliness.展开更多
Developing multifunctional energy storage systems with high specific energy, high specific power and long cycling life has been the one of the most important research directions. Compared to batteries and traditional ...Developing multifunctional energy storage systems with high specific energy, high specific power and long cycling life has been the one of the most important research directions. Compared to batteries and traditional capacitors, supercapacitors possess more balanced performance with both high specific power and long cycle-life. Nevertheless, regular supercapacitors can only achieve energy storage without harvesting energy and the energy density is still not very high compared to batteries. Therefore, combining high specific energy and high specific power,long cycle-life and even fast self-charging into one cell has been a promising direction for future energy storage devices. The multifunctional hybrid supercapacitors like asymmetric supercapacitors, batteries/supercapacitors hybrid devices and self-charging hybrid supercapacitors have been widely studied recently. Carbon based electrodes are common materials used in all kinds of energy storage devices due to their fabulous electrical and mechanical properties. In this survey, the research progress of all kinds of hybrid supercapacitors using multiple effects and their working mechanisms are briefly reviewed. And their advantages and disadvantages are discussed. The hybrid supercapacitors have great application potential for portable electronics, wearable devices and implantable devices in the future.展开更多
In past decades,the performance of supercapacitors has been greatly improved by rationalizing the electrode materials at the nanoscale.However,there is still a lack of understanding on how the charges are efficiently ...In past decades,the performance of supercapacitors has been greatly improved by rationalizing the electrode materials at the nanoscale.However,there is still a lack of understanding on how the charges are efficiently stored in the electrodes or transported across the electrolyte/electrode interface.As it is very challenging to investigate the ion-involved physical and chemical processes with single experiment or computation,combining advanced analytic techniques with electrochemical measurements,i.e.,developing in-situ characterizations,have shown considerable prospect for the better understanding of behaviors of ions in electrodes for supercapacitors.Herein,we briefly review several typical in-situ techniques and the mechanisms these techniques reveal in charge storage mechanisms specifically in supercapacitors.Possible strategies for designing better electrode materials are also discussed.展开更多
Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electroni...Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electronics and automotive transportation,etc.[1,2].Furthermore.展开更多
基金financially supported by the National Natural Science Foundation of China (Grants 51872283, 21805273)National Key R&D Program of China (Grant 2016YFA0200200)+4 种基金Liaoning BaiQianWan Talents Program, LiaoNing Revitalization Talents Program (Grant XLYC1807153)Natural Science Foundation of Liaoning Province, Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802)DICP&QIBEBT (Grant DICP&QIBEBT UN201702)DNL Cooperation Fund, CAS (DNL180310, DNL180308, DNL201912, DNL201915)。
文摘Supercapacitors,also known as ultracapacitors or electrochemical capacitors,possess intriguing merits of high power density(10-100 times higher than that of batteries),long life expectancy(millions of cycles),wide operation temperature range (-40℃ to 70℃),environmental friendliness.
基金supported by the National Key Research & Development Program of China (2018YFA0208401)。
文摘Developing multifunctional energy storage systems with high specific energy, high specific power and long cycling life has been the one of the most important research directions. Compared to batteries and traditional capacitors, supercapacitors possess more balanced performance with both high specific power and long cycle-life. Nevertheless, regular supercapacitors can only achieve energy storage without harvesting energy and the energy density is still not very high compared to batteries. Therefore, combining high specific energy and high specific power,long cycle-life and even fast self-charging into one cell has been a promising direction for future energy storage devices. The multifunctional hybrid supercapacitors like asymmetric supercapacitors, batteries/supercapacitors hybrid devices and self-charging hybrid supercapacitors have been widely studied recently. Carbon based electrodes are common materials used in all kinds of energy storage devices due to their fabulous electrical and mechanical properties. In this survey, the research progress of all kinds of hybrid supercapacitors using multiple effects and their working mechanisms are briefly reviewed. And their advantages and disadvantages are discussed. The hybrid supercapacitors have great application potential for portable electronics, wearable devices and implantable devices in the future.
基金supported by the National Natural Science Foundation of China(grant Nos.51322204 and 51772282)。
文摘In past decades,the performance of supercapacitors has been greatly improved by rationalizing the electrode materials at the nanoscale.However,there is still a lack of understanding on how the charges are efficiently stored in the electrodes or transported across the electrolyte/electrode interface.As it is very challenging to investigate the ion-involved physical and chemical processes with single experiment or computation,combining advanced analytic techniques with electrochemical measurements,i.e.,developing in-situ characterizations,have shown considerable prospect for the better understanding of behaviors of ions in electrodes for supercapacitors.Herein,we briefly review several typical in-situ techniques and the mechanisms these techniques reveal in charge storage mechanisms specifically in supercapacitors.Possible strategies for designing better electrode materials are also discussed.
基金financially supported by the National Natural Science Foundation of China(22125903,51872283,22005298)。
文摘Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electronics and automotive transportation,etc.[1,2].Furthermore.