Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc...Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.展开更多
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ...In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.展开更多
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据...针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。展开更多
基金supported by National Key Research and Development Program of China under Grant 2020YFB1804901State Key Laboratory of Rail Traffic Control and Safety(Contract:No.RCS2022ZT 015)Special Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau(cstc2019jscx-fxydX0053).
文摘Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.
基金supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (0506011200702)National Natural Science Foundation of China+2 种基金Tian Yuan Special Foundation (10926059)Foundation of Zhejiang Educational Committee (Y200803920)Scientific Research Foundation of Hangzhou Dianzi University(KYS025608094)
文摘In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.
基金Supported by the NSF of Henan Province(0611052600)
文摘Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
文摘针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。