期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
基于TCN-BiLSTM-Attention-ESN的光伏功率预测 被引量:6
1
作者 时培明 郭轩宇 +3 位作者 杜清灿 许学方 贺长波 李瑞雄 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期304-316,共13页
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳... 针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。 展开更多
关键词 光伏发电功率 预测 神经网络 回声状态网络 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于知识与AW-ESN融合的烧结过程FeO含量预测 被引量:2
2
作者 方怡静 蒋朝辉 +2 位作者 黄良 桂卫华 潘冬 《自动化学报》 EI CAS CSCD 北大核心 2024年第2期282-294,共13页
氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一... 氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法.首先,针对烧结过程热状态参数缺失的问题,建立烧结料层最高温度分布模型,实现基于料层温度分布特征的FeO含量等级划分;其次,针对烧结过程参数波动频繁的问题,提出基于核函数高维映射的多尺度数据配准方法,有效抑制离群点的影响,提升建模数据的质量;最后,针对烧结过程数据驱动模型缺乏机理认知致使模型预测精度不高的问题,将过程数据中提取得到的FeO含量等级知识与AW-ESN (Adaptive weight echo state network)结合,建立DK-AWESN模型,有效提升复杂工况下FeO含量的预测精度.现场工业数据试验表明,所提方法能实时准确地预测烧结过程FeO含量,为烧结过程的智能化调控提供实时有效的FeO含量反馈信息. 展开更多
关键词 FeO含量预测 烧结过程 数据知识 变权重回声状态网络 信息融合
在线阅读 下载PDF
基于EMD-DESN的无人机集群航迹目的地预测 被引量:1
3
作者 薛锡瑞 黄树彩 +1 位作者 韦道知 吴建峰 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期290-299,共10页
无人机(unmanned aerial vehicle,UAV)集群作战样式多样、运动模式复杂,导致集群航迹目的地难以预测。为解决上述问题,本文提出了一种基于经验模态分解(empirical mode decomposition,EMD)和深度回声状态网络(deep echo state network,D... 无人机(unmanned aerial vehicle,UAV)集群作战样式多样、运动模式复杂,导致集群航迹目的地难以预测。为解决上述问题,本文提出了一种基于经验模态分解(empirical mode decomposition,EMD)和深度回声状态网络(deep echo state network,DESN)的UAV集群航迹目的地预测算法。为使集群运动模型更真实地模拟UAV集群作战过程,本文引入航向误差时变方差,改进了Olfati-Saber集群运动模型的虚拟领导项。为处理因群内的协同作用和集群航向误差导致的运动非平稳性,引入了EMD,对UAV航迹序列进行重构。考虑到获知航迹的时序性,设计了滑窗结构,采用DESN对重构航迹的不同时段进行目的地预测。仿真实验结果表明,本文提出的EMD-DESN算法较基本DESN算法能以更高的准确度预测UAV集群航迹目的地,并能更早地实现稳定的正确预测。 展开更多
关键词 无人机集群 目的地预测 深度回声状态网络 经验模态分解 改进Olfati-Saber模型
在线阅读 下载PDF
基于PLESN和LESQRN概率预测模型的短期电力负荷预测 被引量:3
4
作者 樊江川 于昊正 +2 位作者 王冬生 安佳坤 杨丽君 《燕山大学学报》 北大核心 2024年第1期54-61,共8页
针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕... 针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕捉负荷的多重特征定义了周期性和趋势性损失函数辅助优化点预测模型然后为克服残差的波动问题利用概率预测模型对点预测值与真实值的残差进行建模预测最后整合同时刻的点预测值与残差预测区间得到概率预测模型结果.实际算例结果表明与其他模型相比所提模型不仅有效抑制尖端振荡现象而且能够生成可靠的概率密度分布. 展开更多
关键词 短期电力负荷预测 周期性建模 泄露积分型回声状态网络 分位数回归
在线阅读 下载PDF
基于回声状态网络的智能合约漏洞检测方法 被引量:1
5
作者 刘春霞 徐晗颖 +2 位作者 高改梅 党伟超 李子路 《计算机应用》 北大核心 2025年第1期153-161,共9页
区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确... 区块链平台上的智能合约是为链上各方提供安全可信赖服务的去中心化应用程序,而智能合约漏洞检测能确保智能合约的安全性。然而,现有的智能合约漏洞检测方法在样本数量不均衡和语义信息挖掘不全面时,会出现特征学习不足和漏洞检测准确率低的问题,而且,这些方法无法对新的合约漏洞进行检测。针对上述问题,提出一种基于回声状态网络(ESN)的智能合约漏洞检测方法。首先,根据合约图,对不同语义、语法边进行学习,并利用Skip-Gram模型训练得到特征向量;其次,结合ESN和迁移学习,实现对新合约漏洞的迁移扩展,以提高漏洞检测率;最后,在Etherscan平台搜集的智能合约数据集上进行实验。实验结果表明,所提方法的准确率、精确率、召回率和F1分数分别达到了94.30%、97.54%、91.68%和94.52%,与双向长短时记忆(BLSTM)网络、自注意力机制的双向长短时记忆(BLSTM-ATT)相比,所提方法的准确率分别提高了5.93和11.75个百分点,漏洞检测性能更优。消融实验也进一步验证了ESN对智能合约漏洞检测的有效性。 展开更多
关键词 漏洞检测 智能合约 回声状态网络 迁移学习 区块链
在线阅读 下载PDF
粒子群优化算法结合改进回声状态网络的PEMFC剩余使用寿命预测
6
作者 高锋阳 刘嘉 +3 位作者 杨栋 韩国鹏 齐丰旭 刘庆寅 《西北工业大学学报》 北大核心 2025年第3期478-487,共10页
为提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)退化预测的精度,提出一种基于粒子群(particle swarm optimization,PSO)算法优化改进回声状态网络(revised echo state network,RESN)的PEMFC电压预测方法。通过改... 为提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)退化预测的精度,提出一种基于粒子群(particle swarm optimization,PSO)算法优化改进回声状态网络(revised echo state network,RESN)的PEMFC电压预测方法。通过改进回声状态网络水库中各神经元连接方式,加快非线性拟合过程;利用PSO算法优化模型谱半径、泄漏率、神经元数量等,提高模型预测精度,采用SG(Savitzky-Golay)滤波算法对原始数据有效去峰去噪,再利用PSO-RESN准确预测PEMFC电压;采用不同样本数据集作为训练集和测试集,将所提模型在静态和准动态实验数据集下与扩展卡尔曼滤波、传统回声状态网络进行对比。结果表明,在训练集占比为80%时,对于静态工况FC1,相较于ESN,PSO-RESN方法的均方根误差(root mean square error,RMSE)和平均百分比误差(mean absolute percentage error,MAPE)分别降低了17.50%和25.53%;对于准动态工况FC2,相较于ESN方法,PSO-RESN方法的均方根误差和平均百分比误差分别降低了16.93%和21.28%。所提方法能够实现PEMFC更高精度退化趋势与剩余使用寿命预测。 展开更多
关键词 质子交换膜燃料电池 退化预测 回声状态网络 粒子群算法 剩余使用寿命
在线阅读 下载PDF
基于改进回声状态网络的质子交换膜燃料电池剩余寿命预测
7
作者 袁铁江 李荣盛 +1 位作者 康建东 闫华光 《中国电力》 北大核心 2025年第5期102-109,共8页
针对质子交换膜燃料电池(PEMFC)的剩余有效寿命预测技术(RUL)在中长期预测效果不佳的问题,提出了一种基于改进灰狼优化算法(IGWO)和回声状态网络(ESN)的剩余寿命预测方法。首先选取电堆电压作为健康指标,使用卷积平滑滤波法对PEMFC数据... 针对质子交换膜燃料电池(PEMFC)的剩余有效寿命预测技术(RUL)在中长期预测效果不佳的问题,提出了一种基于改进灰狼优化算法(IGWO)和回声状态网络(ESN)的剩余寿命预测方法。首先选取电堆电压作为健康指标,使用卷积平滑滤波法对PEMFC数据集进行数据平滑和归一化处理,有效减少异常值对后续模型训练的干扰。然后利用IGWO的局部和全局寻优能力对ESN的储备池参数进行优化,构建出IGWO-ESN网络模型,并利用处理后数据集进行PEMFC剩余寿命预测模型的训练,最后与传统的ESN进行对比验证。结果表明,改进后的ESN模型预测均方根误差和平均绝对百分比误差分别为0.0342和0.9315%,预测精度相较于普通ESN模型明显提升,中长期RUL的预测准确度也更高。 展开更多
关键词 质子交换膜燃料电池 回声状态网络 灰狼优化算法 剩余寿命预测
在线阅读 下载PDF
基于ESN的多指标DHP控制策略在污水处理过程中的应用 被引量:18
8
作者 乔俊飞 薄迎春 韩广 《自动化学报》 EI CSCD 北大核心 2013年第7期1146-1151,共6页
针对污水处理过程(Wastewater treatment process,WWTP)溶解氧(Dissolved oxygen,DO)及硝态氮浓度控制问题,提出了一种多评价指标的DHP(Dual heuristic dynamic programming)控制策略.该策略能够降低评价指标的复杂性,提高评价网络的逼... 针对污水处理过程(Wastewater treatment process,WWTP)溶解氧(Dissolved oxygen,DO)及硝态氮浓度控制问题,提出了一种多评价指标的DHP(Dual heuristic dynamic programming)控制策略.该策略能够降低评价指标的复杂性,提高评价网络的逼近精度.采用回声状态网络(Echo state networks,ESNs)实现评价函数及控制策略的逼近,研究了控制器的在线学习算法.实验表明,该策略在控制性能上优于单评价指标的DHP策略及常规PID控制策略. 展开更多
关键词 自适应动态规划 多评价指标 污水处理 回声状态网络
在线阅读 下载PDF
复杂装备多因素耦合安全性QHS-ESN度量 被引量:2
9
作者 李超 王瑛 王强 《系统工程与电子技术》 EI CSCD 北大核心 2014年第9期1776-1781,共6页
针对装备安全事故耦合机理不明确、危险因素关联复杂的问题,提出场景分割耦合方法。将危险因素分割为危害故障、人为失误、致命环境、危险属性4个分量,从危险分量之间的非线性耦合关系拟合角度进行装备安全性度量;在此基础上,利用量子... 针对装备安全事故耦合机理不明确、危险因素关联复杂的问题,提出场景分割耦合方法。将危险因素分割为危害故障、人为失误、致命环境、危险属性4个分量,从危险分量之间的非线性耦合关系拟合角度进行装备安全性度量;在此基础上,利用量子和声算法较强的全局寻优能力,构建一种新的量子和声搜索-回声状态网络(quantum harmony search echo state network,QHS-ESN)模型及其算法。并将其应用到某型飞机低空大表速飞行安全性度量中。仿真结果表明,该模型比原有的回声状态网络模型、和声神经网络模型在低空大表速飞行场景危险分量非线性耦合关系拟合上,兼顾拟合精度和稳定性能,具有更好的装备安全性度量效果。 展开更多
关键词 事故场景 分割耦合 量子和声搜索 回声状态网络 安全性度量
在线阅读 下载PDF
基于KPCA优化ESN的网络流量预测方法 被引量:6
10
作者 田中大 李树江 +1 位作者 王艳红 高宪文 《电机与控制学报》 EI CSCD 北大核心 2015年第12期114-120,共7页
为了提高网络流量的预测精确度,提出一种核主成分分析(KPCA)优化回声状态网络(ESN)的网络流量预测方法。首先利用相空间重构对网络流量序列进行处理,提高序列的可预测性,然后对网络流量序列进行核主成分分析,提取序列中的有效信息,通过... 为了提高网络流量的预测精确度,提出一种核主成分分析(KPCA)优化回声状态网络(ESN)的网络流量预测方法。首先利用相空间重构对网络流量序列进行处理,提高序列的可预测性,然后对网络流量序列进行核主成分分析,提取序列中的有效信息,通过实验方法确定回声状态网络的储备池参数,最后利用回声状态网络对网络流量进行预测。与标准回声状态网络、差分自回归滑动平均模型(ARIMA)、以及最小二乘支持向量机(LSSVM)预测模型进行了仿真对比,结果表明提出的方法具有更高的预测精确度以及更小的预测误差,同时一定程度上减少了预测时间。 展开更多
关键词 网络流量 预测 回声状态网络 核主成分分析 相空间重构
在线阅读 下载PDF
基于PSO-WPESN的短期电力负荷预测方法 被引量:14
11
作者 周红标 王乐 +1 位作者 卜峰 应根旺 《电测与仪表》 北大核心 2017年第6期113-119,共7页
精确的短期电力负荷预测是电力生产优化调度和安全稳定运行的重要保证,是智能电网建设的重要一环。为提高模型的预测精度,提出了一种基于粒子群优化小波包回声状态神经网络的短期电力负荷预测方法。首先利用多分辨率小波包分解方法对负... 精确的短期电力负荷预测是电力生产优化调度和安全稳定运行的重要保证,是智能电网建设的重要一环。为提高模型的预测精度,提出了一种基于粒子群优化小波包回声状态神经网络的短期电力负荷预测方法。首先利用多分辨率小波包分解方法对负荷数据进行分解和重构,建立小波包回声状态网预测模型;然后,利用粒子群算法对预测模型储备池中的参数进行优化。实验结果表明:针对短期电力负荷动态时间序列数据,与BP、Elman、传统ESN等网络相比,PSO-WPESN网络的预测精度、稳定性和泛化能力都得到明显增强,尤其是能在一定程度上缓解由于输出矩阵过大造成ESN存在病态解的弊端。 展开更多
关键词 粒子群 小波包分解 回声状态网 电力负荷 短期预测
在线阅读 下载PDF
基于ESN和PSO的非线性模型预测控制 被引量:7
12
作者 柴毅 周海林 +1 位作者 付东莉 罗德超 《控制工程》 CSCD 北大核心 2011年第6期864-867,共4页
针对传统的控制理论对实际的工业生产过程中的被控系统,特别是具有强非线性的系统控制效果不是很理想,而应用非线性模型预测控制算法能够较好解决非线性系统的控制问题,提出了一种基于回声状态网络(Echo State Network,ESN)模型进行非... 针对传统的控制理论对实际的工业生产过程中的被控系统,特别是具有强非线性的系统控制效果不是很理想,而应用非线性模型预测控制算法能够较好解决非线性系统的控制问题,提出了一种基于回声状态网络(Echo State Network,ESN)模型进行非线性系统辨识和粒子群优化(Particle Swarm Optimization,PSO)进行滚动优化的非线性模型预测控制系统的算法。ESN能够很好地辨识非线性系统,其计算时间、数据训练和稳定性相对于传统递归神经网络有了较大进步,PSO具有全局优化和较快的寻优速度。针对典型化工非线性对象连续搅拌槽反应器(Continue Stirred Tank Reactor,CSTR)的仿真实例表明,此模型在预测控制优于BP和PSO结合的非线性预测控制,以及传统的PID控制,证明了该算法运用于非线性模型预测控制中的有效性。 展开更多
关键词 模型预测控制 回声状态网络(esn) 粒子群优化 反馈校正 CSTR
在线阅读 下载PDF
基于PSO-ESN神经网络的污水BOD预测 被引量:26
13
作者 乔俊飞 李瑞祥 +1 位作者 柴伟 韩红桂 《控制工程》 CSCD 北大核心 2016年第4期463-467,共5页
针对污水处理过程具有非线性的特点,建立基于PSO-ESN神经网络的污水处理软测量模型,来对于污水处理关键水质参数BOD(Biochemical Oxygen Demand)进行预测。由于回声状态网络(Echo State Network,ESN)学习算法无法有效解决高维矩阵训练... 针对污水处理过程具有非线性的特点,建立基于PSO-ESN神经网络的污水处理软测量模型,来对于污水处理关键水质参数BOD(Biochemical Oxygen Demand)进行预测。由于回声状态网络(Echo State Network,ESN)学习算法无法有效解决高维矩阵训练不可逆,采用基于粒子群优化算法对于回声状态神经网络输出权重进行训练,进而有效解决回声状态网络病态解的问题。仿真结果证明,所设计的基于关键水质参数生化需氧量(BOD)软测量模型,其应用在污水处理关键水质参数预测的有效性,且该软测量模型具有较高测量精度。 展开更多
关键词 生化需氧量 回声状态网络 粒子群优化算法 污水处理工程 软测量模型
在线阅读 下载PDF
基于ESN的污水处理过程优化控制 被引量:8
14
作者 乔俊飞 王莉莉 韩红桂 《智能系统学报》 CSCD 北大核心 2015年第6期831-837,共7页
针对污水处理过程能耗过高的问题,提出了一种基于状态回声网络(ESN)的在线优化控制方法。建立了污水处理过程预测模型,实现性能指标的预测;根据系统的状态以及预测的性能指标,采用ESN实时优化控制变量的设定值;将优化后的设定值传送给... 针对污水处理过程能耗过高的问题,提出了一种基于状态回声网络(ESN)的在线优化控制方法。建立了污水处理过程预测模型,实现性能指标的预测;根据系统的状态以及预测的性能指标,采用ESN实时优化控制变量的设定值;将优化后的设定值传送给底层控制器进行跟踪控制。将ESN优化控制方法在污水处理过程基准仿真模型(BSM1)上进行了验证,实验结果表明,该方法不但能够满足出水水质的要求,而且降低了污水处理过程运行成本。 展开更多
关键词 污水处理过程 优化控制 状态回声网络 性能指标预测模型 基准仿真模型
在线阅读 下载PDF
基于VMD-DESN-MSGP模型的超短期光伏功率预测 被引量:53
15
作者 王粟 江鑫 +1 位作者 曾亮 常雨芳 《电网技术》 EI CSCD 北大核心 2020年第3期917-926,共10页
光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯... 光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯混合过程专家模型(mixtureof sparse gaussian process experts model,MSGP)的超短期光伏功率预测方法。首先采用VMD将光伏功率时间序列分解为不同的模态,降低数据的非平稳性;为提高模型在超短尺度时序的预测能力,对各模态分别建立DESN预测模型,将各模态预测结果进行求和重构;为进一步提高模型预测精度,对误差的特性进行分析,采用MSGP对预测误差进行补偿;最后将误差的预测值与原功率的预测值相叠加作为最终预测结果。仿真结果表明,该方法在光伏功率时序预测中的效果比传统预测模型更好,有效提高了超短期光伏功率时间序列预测的准确性。 展开更多
关键词 光伏功率预测 时间序列 变分模态分解 深度回声状态网络 稀疏高斯混合过程专家模型
在线阅读 下载PDF
基于ESN的非线性系统未建模动态补偿及控制 被引量:2
16
作者 张立炎 向馗 +1 位作者 龙容 马龙华 《电子学报》 EI CAS CSCD 北大核心 2016年第1期60-66,共7页
神经网络模型经线性化后可构建神经预测控制框架,但是,对高阶项的忽略会产生大量未建模动态.本文以回声状态网络(Echo State Network,ESN)为代表,提出基于岭回归的未建模动态补偿方法.以线性化前后ESN内部状态观测的偏差作为表征未建模... 神经网络模型经线性化后可构建神经预测控制框架,但是,对高阶项的忽略会产生大量未建模动态.本文以回声状态网络(Echo State Network,ESN)为代表,提出基于岭回归的未建模动态补偿方法.以线性化前后ESN内部状态观测的偏差作为表征未建模动态的样本,通过岭回归估计未建模动态与ESN状态变量之间的线性依存关系.将回归得到的补偿项内化为ESN储备池吸引子的平移和旋转,体现了吸引子的吸引力对激活函数边界约束作用的有效补充.两个实例验证了补偿方法对提高控制精度具有积极作用. 展开更多
关键词 回声状态网络 岭回归 未建模动态 预测控制 内化
在线阅读 下载PDF
基于级联回声状态网络的氢燃料电池剩余使用寿命预测
17
作者 潘诗媛 华志广 +2 位作者 王光伟 赵冬冬 窦满峰 《中国电机工程学报》 北大核心 2025年第12期4718-4727,I0015,共11页
该文针对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)剩余使用寿命(remaining useful life,RUL)长期预测过程中预测精度低的问题,提出一种改进型回声状态网络(echo state network,ESN)结构以实现PEMFC输出电压的精... 该文针对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)剩余使用寿命(remaining useful life,RUL)长期预测过程中预测精度低的问题,提出一种改进型回声状态网络(echo state network,ESN)结构以实现PEMFC输出电压的精准预测。采用多个蓄水池构建一种级联型回声状态网络(cascade echo state network,CasESN)结构,利用遗传算法(genetic algorithm,GA)优化CasESN网络结构参数,并基于优化后的CasESN实现PEMFC输出电压在未来数百个小时区间内的长期预测。在稳态和准动态数据集下分别对所提出的CasESN网络结构进行测试并与经典ESN进行量化比较。稳态和准动态数据集的训练时长分别为700和750 h时,2CasESN比单个ESN的均方根误差(root mean square error,RMSE)分别降低11.94%和23.67%。结果表明,级联型ESN结构能够在一定程度上提高PEMFC寿命预测精度。 展开更多
关键词 质子交换膜燃料电池 寿命预测 遗传算法 回声状态网络 级联结构
在线阅读 下载PDF
基于无标度网络的类脑储备池拓扑设计
18
作者 刘瑄昀 闫莹 +1 位作者 於志勇 黄昉菀 《浙江大学学报(工学版)》 北大核心 2025年第7期1385-1393,1402,共10页
为了优化回声状态网络(ESN)储备池的设计,应用基于随机矩阵理论的Chung-Lu(CL)构造算法生成灵活且高效的无标度网络.针对在构建过程中出现的度值偏差,使用随机剪枝或度值剪枝改进无标度网络.通过模拟随机攻击或针对性攻击来提高储备池... 为了优化回声状态网络(ESN)储备池的设计,应用基于随机矩阵理论的Chung-Lu(CL)构造算法生成灵活且高效的无标度网络.针对在构建过程中出现的度值偏差,使用随机剪枝或度值剪枝改进无标度网络.通过模拟随机攻击或针对性攻击来提高储备池的鲁棒性.实验结果表明,加入剪枝机制的CL算法构造了具有幂律性质的无标度网络,构建速度和预测性能均明显优于基线算法,随机剪枝的效果优于度值剪枝.相比基线算法的最优结果,基于随机剪枝的CL算法构建的ESN的运行时间和预测误差最少降低了14.2%和10.6%. 展开更多
关键词 无标度网络 类脑储备池 剪枝机制 回声状态网络 时间序列预测
在线阅读 下载PDF
基于SCAD-ESN的时间序列预测模型 被引量:4
19
作者 张各各 徐珍 +1 位作者 曾波 陈祥涛 《工程科学与技术》 EI CAS CSCD 北大核心 2017年第6期129-134,共6页
回声状态网络(ESN)是一种重要的时间序列预测方法,但在训练数据存在噪声或野点情况下,ESN将会出现过拟合问题。针对该问题,提出基于平滑消边绝对偏离罚函数的回声状态网络(SCAD-ESN)模型。不同于在模型中加入岭回归、L1范数罚函数及小... 回声状态网络(ESN)是一种重要的时间序列预测方法,但在训练数据存在噪声或野点情况下,ESN将会出现过拟合问题。针对该问题,提出基于平滑消边绝对偏离罚函数的回声状态网络(SCAD-ESN)模型。不同于在模型中加入岭回归、L1范数罚函数及小波降噪等常规方法,该模型利用SCAD罚函数对变量进行选择,将小变量置为零以满足变量稀疏性,将大变量直接置为常数,从而能够很好地解决ESN过拟合问题并满足近似无偏估计。对于SCAD罚函数的非凸函数优化问题,提出基于局部二次近似(LQA)的求解方法,将最小角回归(LQR)方法用于SCAD罚函数求解,避免了计算量巨大的问题。使用基于粒子群优化(PSO)的超参数选取方法快速确定平滑消边绝对偏离–回声状态网络模型的超参数,克服利用经验选取超参数时存在的盲目性较大且难以确定整体最优的超参数问题。混沌系统数值仿真和网络流量仿真结果表明,相对于常规模型,该模型能有效地降低测试误差,从而克服过拟合问题。 展开更多
关键词 混沌时间序列预测 回声状态网络 平滑消边绝对偏离罚函数 粒子群算法
在线阅读 下载PDF
基于ARMA-RESN的网络流量预测 被引量:3
20
作者 王雪松 赵跃龙 《计算机工程与应用》 CSCD 2014年第13期90-95,共6页
为了获得更加理想的网络流预测结果,融合回声状态网络和自回归移动平均模型的优点,提出一种基于ARMA-RESN的网络流量预测模型。分别采用自回归移动平均和回声状态网络对网络流量线性变化特征和非线性变化特性进行建模与预测,对自回归移... 为了获得更加理想的网络流预测结果,融合回声状态网络和自回归移动平均模型的优点,提出一种基于ARMA-RESN的网络流量预测模型。分别采用自回归移动平均和回声状态网络对网络流量线性变化特征和非线性变化特性进行建模与预测,对自回归移动平均和回声状态网络的预测结果进行融合,得到网络流量的最终预测结果,最后采用具体网络流量数据以及多个对比模型进行了仿真实验。仿真结果表明,相对于其他网络流量预测模型,ARMA-RESN不仅提高了网络流量的预测精度,而且具有更好的鲁棒性。 展开更多
关键词 网络流量 自回归移动平均 回声状态网络 预测精度 误差补偿
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部