The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they ofte...The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.展开更多
MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和...MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和EVI时间谱数据进行了重构,从而进行了河西走廊绿洲中东部样区一系列耕地信息的提取实验,包括耕地、休耕地识别以及耕地复种指数、作物种类提取。在此基础上,对MODIS的NDVI与EVI数据的应用进行了对比分析。结果显示:(1)利用傅立叶谐波变换得到的EVI和NDVI时间谱曲线的谐波余项及谐波振幅对耕地进行识别,从识别精度来看,EVI要优于NDVI,识别精度分别为97.17%和95.99%,Kappa系数分别达到0.7938和0.6518;(2)通过计算时间序列曲线的波峰数能够提取耕地的复种指数,并且在EVI和NDVI曲线波峰阈值分别设为0.20和0.25时,休耕地能较为准确地被识别出来;(3)通过提取作物生长期内曲线的VI最大增长速率时间点以及峰值时间点等信息,作物种类能被初步识别,并且EVI较NDVI具有更强的识别能力。展开更多
以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,...以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,EVI)线性模型的估算结果进行对比,结合地面实测LAI数据分别对这2种模型估算结果进行精度评价。结果表明,采用EVI线性模型估算LAI,决定系数R 2为0.582,均方根误差(root mean square error,RMSE)为0.701;而采用SiB2模型估算LAI,R 2为0.798,RMSE为0.358,均比EVI线性模型有所改善。该研究发现,结合中高空间分辨率的GF-1 WFV数据,SiB2模型更适宜于该研究区森林植被的LAI反演。展开更多
文摘The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology.
文摘MODIS植被指数数据是区域土地利用信息提取的重要数据源。为了对比MODIS两种主要植被指数(NDIV、EVI)在耕地信息提取中的应用,采用通过时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS),对2006年全年MODIS 16天250m的NDVI和EVI时间谱数据进行了重构,从而进行了河西走廊绿洲中东部样区一系列耕地信息的提取实验,包括耕地、休耕地识别以及耕地复种指数、作物种类提取。在此基础上,对MODIS的NDVI与EVI数据的应用进行了对比分析。结果显示:(1)利用傅立叶谐波变换得到的EVI和NDVI时间谱曲线的谐波余项及谐波振幅对耕地进行识别,从识别精度来看,EVI要优于NDVI,识别精度分别为97.17%和95.99%,Kappa系数分别达到0.7938和0.6518;(2)通过计算时间序列曲线的波峰数能够提取耕地的复种指数,并且在EVI和NDVI曲线波峰阈值分别设为0.20和0.25时,休耕地能较为准确地被识别出来;(3)通过提取作物生长期内曲线的VI最大增长速率时间点以及峰值时间点等信息,作物种类能被初步识别,并且EVI较NDVI具有更强的识别能力。
文摘以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,EVI)线性模型的估算结果进行对比,结合地面实测LAI数据分别对这2种模型估算结果进行精度评价。结果表明,采用EVI线性模型估算LAI,决定系数R 2为0.582,均方根误差(root mean square error,RMSE)为0.701;而采用SiB2模型估算LAI,R 2为0.798,RMSE为0.358,均比EVI线性模型有所改善。该研究发现,结合中高空间分辨率的GF-1 WFV数据,SiB2模型更适宜于该研究区森林植被的LAI反演。