With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
Using impulse hypothesis to solve far-distance rendezvous is difficult to be realized in a real project and the guidance accuracy cannot be controlled. A two-maneuver guidance law is designed for the two-impulse rende...Using impulse hypothesis to solve far-distance rendezvous is difficult to be realized in a real project and the guidance accuracy cannot be controlled. A two-maneuver guidance law is designed for the two-impulse rendezvous problem. The velocity gain guidance is applied to the first maneuver and the time-cut-off law is applied to the second one. Theoretical and simulation results show that the plan is credible. Accuracy requirements in fardistance rendezvous and in transform to close-in rendezous can be met.展开更多
Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propo...Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propose a rendezvous control strategy,which divides the rendezvous process into two parts:The loose formation rendezvous and the close formation rendezvous.In the first stage,UAVs are supposed to reach the specific target locations simultaneously and form a loose formation.A distributed control strategy based on first-order consensus algorithm is presented to achieve this goal.Then the second stage is designed based on the second-order consensus algorithm to complete the transition from the loose formation to the close formation.This process needs the speeds and heading angles of UAVs to reach an agreement.Besides,control algorithms with a virtual leader are proposed,by which the formation states can reach a specific value.Finally,simulation results show that the control algorithms are capable of realizing the mission rendezvous of multi-UAV and the consistence of UAVs′final states,which verify the effectiveness and feasibility of the designed control strategy.展开更多
Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the ...Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.展开更多
Rendezvous is a blind process establishing a communication link on a common channel between a pair of nodes in cognitive radio networks. We propose two guaranteed rendezvous algorithms for cognitive radio networks und...Rendezvous is a blind process establishing a communication link on a common channel between a pair of nodes in cognitive radio networks. We propose two guaranteed rendezvous algorithms for cognitive radio networks under both single-radio and multi-radio scenarios with an asynchronous setting. For single-radio scenario, each cycle length is a prime number associated with a channel hopping sequence.The rendezvous can be guaranteed as long as the IDs of the two nodes are different. For multi-radio scenario, we propose a cycle length and rotation based rendezvous algorithm. Each node generates a channel hopping sequence with only one cycle length. Then these radios of each nodes rotate on the generated sequence with different rotation numbers at each hopping cycle. The rendezvous between two nodes is guaranteed as long as they have different cycle lengths or the same cycle length with different number of rotations. We conduct simulations on three metrics and the results show that the proposed algorithms outperform the existing ones.展开更多
This paper is focused on control design for high-precision satellite rendezvous systems.A relative motion model of leader-follower satellites described by relative orbit elements(ROE)is adopted,which has clear geometr...This paper is focused on control design for high-precision satellite rendezvous systems.A relative motion model of leader-follower satellites described by relative orbit elements(ROE)is adopted,which has clear geometric meaning and high accuracy.An improved repetitive control(IRC)scheme is proposed to achieve high-precision position and velocity tracking,which utilizes the advantage of repetitive control to track the signal precisely and conquers the effects of aperiodic disturbances by adding a nonsingular terminal sliding mode(NSTSM)controller.In addition,the nonlinear state error feedback(NLSEF)is used to improve the dynamic performance of repetitive controller and the radial basis function(RBF)neural networks are employed to approximate the unknown nonlinearities.From rigorous Lyapunov analysis,the stability of the whole closed-loop control system is guaranteed.Finally,numerical simulations are carried out to assess the efficiency and demonstrate the advantages of the proposed control scheme.展开更多
针对复杂轨道机动规划与实际问题紧密耦合,建模和求解复杂的难题,提出复杂轨道机动规划本体元建模方法,设计并实现了通用软件。分析轨道机动规划特点,抽象得到任务段、停止条件、控制变量和约束组成的MSCC(Mission control segment-Stop...针对复杂轨道机动规划与实际问题紧密耦合,建模和求解复杂的难题,提出复杂轨道机动规划本体元建模方法,设计并实现了通用软件。分析轨道机动规划特点,抽象得到任务段、停止条件、控制变量和约束组成的MSCC(Mission control segment-Stop condition-Control parameter-Constraint)元模型体系,将MSCC元模型映射到软件设计,得到通用轨道机动规划软件类层次结构,采用C++语言实现了自主软件ATK.Planning,使轨道机动规划可以采用统一的方法描述和软件求解。针对快速交会和地月自由返回转移的仿真结果表明,软件仅通过人机界面配置就可以完成复杂轨道机动规划问题求解,收敛误差小于设定值,大大降低了任务设计时间。展开更多
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
文摘Using impulse hypothesis to solve far-distance rendezvous is difficult to be realized in a real project and the guidance accuracy cannot be controlled. A two-maneuver guidance law is designed for the two-impulse rendezvous problem. The velocity gain guidance is applied to the first maneuver and the time-cut-off law is applied to the second one. Theoretical and simulation results show that the plan is credible. Accuracy requirements in fardistance rendezvous and in transform to close-in rendezous can be met.
基金jointly granted by the Science and Technology on Avionics Integration Laboratorythe Aeronautical Science Foundation(2016ZC15008)
文摘Multiple unmanned aerial vehicles(UAVs)cooperative operation is the main form for UAVs fighting in battlefield,and multi-UAV mission rendezvous is the premise of cooperative reconnaissance and attack missions.We propose a rendezvous control strategy,which divides the rendezvous process into two parts:The loose formation rendezvous and the close formation rendezvous.In the first stage,UAVs are supposed to reach the specific target locations simultaneously and form a loose formation.A distributed control strategy based on first-order consensus algorithm is presented to achieve this goal.Then the second stage is designed based on the second-order consensus algorithm to complete the transition from the loose formation to the close formation.This process needs the speeds and heading angles of UAVs to reach an agreement.Besides,control algorithms with a virtual leader are proposed,by which the formation states can reach a specific value.Finally,simulation results show that the control algorithms are capable of realizing the mission rendezvous of multi-UAV and the consistence of UAVs′final states,which verify the effectiveness and feasibility of the designed control strategy.
基金supported by the China Aerospace Science and Technology Corporation Eighth Research Institute Industry-University-Research Cooperation Fund(No.SAST 2020-019)。
文摘Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.
基金supported in part by NSF under the grant CNS-1526152
文摘Rendezvous is a blind process establishing a communication link on a common channel between a pair of nodes in cognitive radio networks. We propose two guaranteed rendezvous algorithms for cognitive radio networks under both single-radio and multi-radio scenarios with an asynchronous setting. For single-radio scenario, each cycle length is a prime number associated with a channel hopping sequence.The rendezvous can be guaranteed as long as the IDs of the two nodes are different. For multi-radio scenario, we propose a cycle length and rotation based rendezvous algorithm. Each node generates a channel hopping sequence with only one cycle length. Then these radios of each nodes rotate on the generated sequence with different rotation numbers at each hopping cycle. The rendezvous between two nodes is guaranteed as long as they have different cycle lengths or the same cycle length with different number of rotations. We conduct simulations on three metrics and the results show that the proposed algorithms outperform the existing ones.
基金the National Natural Science Foundation of China(No.61873127)the Key International(Regional)Cooperative Research Projects of the National Natural Science Foundation of China(No.62020106003)。
文摘This paper is focused on control design for high-precision satellite rendezvous systems.A relative motion model of leader-follower satellites described by relative orbit elements(ROE)is adopted,which has clear geometric meaning and high accuracy.An improved repetitive control(IRC)scheme is proposed to achieve high-precision position and velocity tracking,which utilizes the advantage of repetitive control to track the signal precisely and conquers the effects of aperiodic disturbances by adding a nonsingular terminal sliding mode(NSTSM)controller.In addition,the nonlinear state error feedback(NLSEF)is used to improve the dynamic performance of repetitive controller and the radial basis function(RBF)neural networks are employed to approximate the unknown nonlinearities.From rigorous Lyapunov analysis,the stability of the whole closed-loop control system is guaranteed.Finally,numerical simulations are carried out to assess the efficiency and demonstrate the advantages of the proposed control scheme.
文摘针对复杂轨道机动规划与实际问题紧密耦合,建模和求解复杂的难题,提出复杂轨道机动规划本体元建模方法,设计并实现了通用软件。分析轨道机动规划特点,抽象得到任务段、停止条件、控制变量和约束组成的MSCC(Mission control segment-Stop condition-Control parameter-Constraint)元模型体系,将MSCC元模型映射到软件设计,得到通用轨道机动规划软件类层次结构,采用C++语言实现了自主软件ATK.Planning,使轨道机动规划可以采用统一的方法描述和软件求解。针对快速交会和地月自由返回转移的仿真结果表明,软件仅通过人机界面配置就可以完成复杂轨道机动规划问题求解,收敛误差小于设定值,大大降低了任务设计时间。