为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决...为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决定分解模态数和带宽,结合最小二乘-旋转不变技术(total least square-estimating signal parameter via rotational invariance techniques,TLS-ESPRIT)对分解出的振荡分量进行参数辨识,无需另外使用降噪算法。通过复合信号测试法、PSCAD/EMTDC电磁暂态仿真法验证了所提方法的有效性。最后,将所提方法与改进Prony算法、MCEEMD法在不同噪声水平和振荡频率下进行对比,结果表明,所提方法能够有效地抑制原始信号的噪声干扰,对耦合的次/超同步振荡信号分解更加准确,参数辨识结果可靠性较高,对风电系统振荡溯源、改善系统阻尼具有一定的参考意义。展开更多
文摘为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决定分解模态数和带宽,结合最小二乘-旋转不变技术(total least square-estimating signal parameter via rotational invariance techniques,TLS-ESPRIT)对分解出的振荡分量进行参数辨识,无需另外使用降噪算法。通过复合信号测试法、PSCAD/EMTDC电磁暂态仿真法验证了所提方法的有效性。最后,将所提方法与改进Prony算法、MCEEMD法在不同噪声水平和振荡频率下进行对比,结果表明,所提方法能够有效地抑制原始信号的噪声干扰,对耦合的次/超同步振荡信号分解更加准确,参数辨识结果可靠性较高,对风电系统振荡溯源、改善系统阻尼具有一定的参考意义。
文摘由于共形天线阵列流形的多极化特性(polarization diversity,PD),信源方位参数与极化状态的"耦合"是实现共形阵列天线波达方向(direction-of-arrival,DOA)估计的主要难点。针对柱面共形阵列天线的特点,建立了柱面共形阵列天线的导向矢量模型;通过合理的阵元排列结构设计,结合ESPRIT(esti mation of signalparameters via rotational invariance techniques)算法参数估计的特点,实现了信源极化状态与方位参数的去耦合,推导了ESPRIT算法多参数估计的参数配对方法,最终提出了柱面共形阵列天线盲极化DOA估计算法。计算机Monte Carlo仿真实验验证了所提算法的有效性。