为保证驾驶安全,提高车辆控制系统的智能化水平,实现"手不离盘"操作,设计并实现了一种基于眼电图(EOG)的安全辅助驾驶系统。该系统利用安装在驾驶员眼睛周围的生物电极采集其在观测抬头显示器(HUD,head up display)上提示符...为保证驾驶安全,提高车辆控制系统的智能化水平,实现"手不离盘"操作,设计并实现了一种基于眼电图(EOG)的安全辅助驾驶系统。该系统利用安装在驾驶员眼睛周围的生物电极采集其在观测抬头显示器(HUD,head up display)上提示符时所产生的扫视信号,生成多种车载设备控制命令;对原始多导联EOG信号进行端点检测后,使用了独立分量分析(ICA,independent component analysis)方法进行空域滤波后提取眼动信号特征参数,并结合支持向量机实现了上、左与右扫视动作的识别。实验室环境下对所提算法进行了测试,15位受试者在疲劳与非疲劳状态下的在线平均正确率达到了98.43%与96.0%。实验结果表明,基于ICA多类扫视信号识别算法的安全辅助驾驶系统在眼动信号分析中呈现出了良好的分类性能。展开更多
Recent deep neural network(DNN)based blind image quality assessment(BIQA)approaches take mean opinion score(MOS)as ground-truth labels,which would lead to cross-datasets biases and limited generalization ability of th...Recent deep neural network(DNN)based blind image quality assessment(BIQA)approaches take mean opinion score(MOS)as ground-truth labels,which would lead to cross-datasets biases and limited generalization ability of the DNN-based BIQA model.This work validates the natural instability of MOS through investigating the neuropsychological characteristics inside the human visual system during quality perception.By combining persistent homology analysis with electroencephalogram(EEG),the physiologically meaningful features of the brain responses to different distortion levels are extracted.The physiological features indicate that although volunteers view exactly the same image content,their EEG features are quite varied.Based on the physiological results,we advocate treating MOS as noisy labels and optimizing the DNN based BIQA model with earlystop strategies.Experimental results on both innerdataset and cross-dataset demonstrate the superiority of our optimization approach in terms of generalization ability.展开更多
文摘为保证驾驶安全,提高车辆控制系统的智能化水平,实现"手不离盘"操作,设计并实现了一种基于眼电图(EOG)的安全辅助驾驶系统。该系统利用安装在驾驶员眼睛周围的生物电极采集其在观测抬头显示器(HUD,head up display)上提示符时所产生的扫视信号,生成多种车载设备控制命令;对原始多导联EOG信号进行端点检测后,使用了独立分量分析(ICA,independent component analysis)方法进行空域滤波后提取眼动信号特征参数,并结合支持向量机实现了上、左与右扫视动作的识别。实验室环境下对所提算法进行了测试,15位受试者在疲劳与非疲劳状态下的在线平均正确率达到了98.43%与96.0%。实验结果表明,基于ICA多类扫视信号识别算法的安全辅助驾驶系统在眼动信号分析中呈现出了良好的分类性能。
基金supported by the Medium and Long-term Science and Technology Plan for Radio,Television,and Online Audiovisuals(2023AC0200)the Public Welfare Technology Application Research Project of Zhejiang Province,China(No.LGF21F010001).
文摘Recent deep neural network(DNN)based blind image quality assessment(BIQA)approaches take mean opinion score(MOS)as ground-truth labels,which would lead to cross-datasets biases and limited generalization ability of the DNN-based BIQA model.This work validates the natural instability of MOS through investigating the neuropsychological characteristics inside the human visual system during quality perception.By combining persistent homology analysis with electroencephalogram(EEG),the physiologically meaningful features of the brain responses to different distortion levels are extracted.The physiological features indicate that although volunteers view exactly the same image content,their EEG features are quite varied.Based on the physiological results,we advocate treating MOS as noisy labels and optimizing the DNN based BIQA model with earlystop strategies.Experimental results on both innerdataset and cross-dataset demonstrate the superiority of our optimization approach in terms of generalization ability.