The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without informat...Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.展开更多
This paper proposes a method to improve the spu-rious-free dynamic ranges(SFDRs)of 1-bit sampled signals greatly,which is very beneficial to multi-tone signals detection.Firstly,the relationship between the fundamenta...This paper proposes a method to improve the spu-rious-free dynamic ranges(SFDRs)of 1-bit sampled signals greatly,which is very beneficial to multi-tone signals detection.Firstly,the relationship between the fundamental component and the third harmonic component of 1-bit sampled signals is analyzed for determining four contiguous special frequency bands,which do not contain any third harmonics inside and co-ver 77.8%of the whole Nyquist sampling frequency band.Then,we present a special 4-channel monobit receiver model,where appropriate filter banks are used to obtain four desired pass bands before 1-bit quantization and each channel can sample and process sampled data independently to achieve a good in-stantaneous dynamic range without sacrificing the real-time per-formance or computing resources.The simulation results show that the proposed method effectively eliminates the effect of the most harmonics on SFDRs and the mean SFDR is increased to to 20 dB.Besides,the multi-signals simulation results indicate that the maximum amplitude separation(dynamic range)of two signals in each channel is 12 dB while the proposed monobit re-ceiver can deal with up to eight simultaneous arrival signals.In general,the designing method proposed in this paper has a po-tential engineering value.展开更多
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
文摘Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.
文摘This paper proposes a method to improve the spu-rious-free dynamic ranges(SFDRs)of 1-bit sampled signals greatly,which is very beneficial to multi-tone signals detection.Firstly,the relationship between the fundamental component and the third harmonic component of 1-bit sampled signals is analyzed for determining four contiguous special frequency bands,which do not contain any third harmonics inside and co-ver 77.8%of the whole Nyquist sampling frequency band.Then,we present a special 4-channel monobit receiver model,where appropriate filter banks are used to obtain four desired pass bands before 1-bit quantization and each channel can sample and process sampled data independently to achieve a good in-stantaneous dynamic range without sacrificing the real-time per-formance or computing resources.The simulation results show that the proposed method effectively eliminates the effect of the most harmonics on SFDRs and the mean SFDR is increased to to 20 dB.Besides,the multi-signals simulation results indicate that the maximum amplitude separation(dynamic range)of two signals in each channel is 12 dB while the proposed monobit re-ceiver can deal with up to eight simultaneous arrival signals.In general,the designing method proposed in this paper has a po-tential engineering value.