We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated het...We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.展开更多
We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase sec...We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity la...We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.展开更多
This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source...This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.展开更多
We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber op- erating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating me...We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber op- erating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating method. With low speed, the WS2 nanoplatelets embedded in polyvinyl alcohol could be coated on a BK7 glass substrate coated with high-refractive-index thin polymer. The shortest pulse width of 1.6 gs with a repetition rate of 76.9 kHz is obtained. As the pump power increases to 9 W, the maximum output power is measured to be 250 mW, corresponding to a single pulse energy of 3.25 μJ. To the best of our knowledge, this is the first time to obtain dual-wavelength Q-switched solid-state laser using few-layer WS2 nanoplatelets.展开更多
The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-ca...The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.展开更多
Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(...Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(Al,Ga)N nanowires and graphene has been demonstrated successfully,in which graphene is used as a transparent electrode.Both UV-A and UV-C responses can be clearly detected by the device,and the rejection ratio(R254 nm/R450 nm)exceeds35 times at an applied bias of-2 V.The short response time of the device is less than 20 ms.Furthermore,the underlying mechanism of double ultraviolet responses has also been analyzed systematically.The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of(Al,Ga)N and Ga N sections.展开更多
By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The...By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The measurement range is not larger than a synthetic wavelength.Here,to break through this limitation,we propose a novel DWDH method based on the constrained underdetermined equations,which consists of three parts:(i)prove that the constrained underdetermined equation has a unique integer solution,(ii)design an algorithm to search for the unique integer solution,(iii)introduce a third wavelength into the DWDH system,and design a corresponding algorithm to enhance the anti-noise performance of DWDH.As far as we know,it is the first time that we have discovered that the problem of DWDH can belong in a problem of contained underdetermined equations,and it is also the first time that we have given the mathematical proof for breaking through the limitation of the measurement range.A series of results is shown to test the theory and the corresponding algorithms.More importantly,since the principle of proposed DWDH is based on basic mathematical principles,it can be further extended to various fields,such as dual-wavelength microwave imaging and dual-wavelength coherent diffraction imaging.展开更多
A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Erdoped fiber(EDF) laser with a fiber loop mirror(FLM). The pulse duration of the soliton is 15 ps and ...A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Erdoped fiber(EDF) laser with a fiber loop mirror(FLM). The pulse duration of the soliton is 15 ps and the peak-to-peak separation is 125 ps. The repetition rate of the pulse sequence is 3.47 MHz. The output power is 11.8 mW at the pump power of 128 mW, corresponding to the pulse energy of 1.52 nJ. The FLM with a polarization controller can produce a comb spectrum, which acts as a filter. By adjusting the polarization controller or varying the pump power, the central wavelength of the comb spectrum can be tuned. When it combines with the reflective spectrum of the fiber Bragg grating, the total spectrum of the cavity can be cleaved into two parts, then the bound state soliton with dual-wavelength at 1549.7 nm and 1550.4 nm is obtained.展开更多
We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybr...We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybrid gain medium, i.e., a thulium ytterbium co-doped fiber (TYDF) and an HDF in conjunction with a simple half-opened linear cavity, which is formed by a broadband mirror and an output coupler reflector. Without the HDF, the TYDF laser operates at wavelengths of 1991 and 1999nm with a signal-to-noise ratio of more than 34dB and the slope efficiency of 26.16 %. With the HDF, dual-wavelength output lines are obtained at 2075 and 2083nm with signal-to-noise ratios of more than difference between the two peaks of less than 1 dB at 17dB, 3dB bandwidth of less than 0.2nm and the power the TYDF laser pump power of 320roW.展开更多
We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique. Taking the intrinsic...We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique. Taking the intrinsic advantage of the intracavity birefringence-induced spectral filtering effect in the NPR-based ring laser cavity, the dual-wavelength dissipative solitons are obtained. In addition, the wavelength separation and the lasing location of the dual-wavelength solitons can be flexibly tuned by changing the orientation of the polarization controller.展开更多
We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-...We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.展开更多
A novel widely tunable dual-wavelength mid-IR difference frequency generation (DFG) scheme with uniform grating periodically poled lithium niobate (PPLN) is presented in this paper. By using the temperature-depend...A novel widely tunable dual-wavelength mid-IR difference frequency generation (DFG) scheme with uniform grating periodically poled lithium niobate (PPLN) is presented in this paper. By using the temperature-dependent dispersion property of PPLN, the quasi-phase matching (QPM) peak for the pump may evolve into two separate ones and the wavelength spacing between them increases with the decrease of the crystal temperature. Such two pump QPM peaks may allow simultaneous dual-wavelength mid-IR laser radiations while properly setting the two fundamental pump wavelengths. With this scheme, mid-IR dual-wavelength laser radiations at around 3.228 and 3.548, 3.114 and 3.661, and 3.019 and 3.76 μm, are experimentally achieved for the crystal temperatures of 90, 65, and 30 ℃, respectively, based on the fiber laser fundamental lights.展开更多
基金Project supported by the National Natural Science Foundation of China(NSFC)(Grant No.12004309)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSQ036)the Scientific Research Program funded by Shaanxi Provincial Education Department(Grant No.20JK0947).
文摘We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60736036 and 61021003)the National Basic Research Program of China (Grant No. 2011CB301702)
文摘We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science and Technology Cooperation Program of China under Grant No 2010DFR10900
文摘We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10474071, 60637010, 60671036 and 60278001) and Tianjin Applied Fundamental Research Project, China (07JCZDJC05900).
文摘This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.
基金Project supported by the National Scientific Research Project of China(Grant No.61177047)Beijing Municipal Natural Science Foundation+1 种基金China(Grant No.1102005)the Basic Research Foundation of Beijing University of Technology,China(Grant No.X3006111201501)
文摘We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber op- erating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating method. With low speed, the WS2 nanoplatelets embedded in polyvinyl alcohol could be coated on a BK7 glass substrate coated with high-refractive-index thin polymer. The shortest pulse width of 1.6 gs with a repetition rate of 76.9 kHz is obtained. As the pump power increases to 9 W, the maximum output power is measured to be 250 mW, corresponding to a single pulse energy of 3.25 μJ. To the best of our knowledge, this is the first time to obtain dual-wavelength Q-switched solid-state laser using few-layer WS2 nanoplatelets.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science&Technology Cooperation Program of China under Grant No 2010DFR10900
文摘The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.
基金the National Key Research and Development Program of China(Grant No.2018YFB0406602)Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180252)+6 种基金Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-JSC034)the National Natural Science Foundation of China(Grant Nos.61804163,61875224,and 61827823)the Key Research and Development Program of Jiangsu Province,China(Grant No.BE2018005)Natural Science Foundation of Jiangxi Province,China(Grant No.20192BBEL50033)Research Program of Scientific Instrument,Equipment of CAS(Grant No.YJKYYQ20200073)SINANO(Grant Nos.Y8AAQ21001 and Y4JAQ21001)Vacuum Interconnected Nanotech Workstation(Grant Nos.Nano-X and B2006)。
文摘Due to the wide application of UV-A(320 nm–400 nm)and UV-C(200 nm–280 nm)photodetectors,dual-wavelength(UV-A/UV-C)photodetectors are promising for future markets.A dual-wavelength UV photodetector based on vertical(Al,Ga)N nanowires and graphene has been demonstrated successfully,in which graphene is used as a transparent electrode.Both UV-A and UV-C responses can be clearly detected by the device,and the rejection ratio(R254 nm/R450 nm)exceeds35 times at an applied bias of-2 V.The short response time of the device is less than 20 ms.Furthermore,the underlying mechanism of double ultraviolet responses has also been analyzed systematically.The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of(Al,Ga)N and Ga N sections.
基金Project supported by the Foundation of Science and Technology Department of Shaanxi Province,China(Grant No.2018JQ6009)the Foundation of Education Department of Shaanxi Province,China(Grant No.17JK1165)+4 种基金the Beijing Natural Science Foundation,China(Grant No.Z190004)the National Natural Science Foundation of China(Grant No.61575197)the Innovation Capability Improvement Plan,Hebei Province,China(Grant No.20540302D)the Fundamental Research Funds for the Central Universities,China,the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2017489)the Natural Science Foundation of Hebei Province,China(Grant No.F2018402285).
文摘By using the beat frequency technique,the dual-wavelength digital holography(DWDH)can greatly increase the measurement range of the system.However,the beat frequency technique has a limitation in measurement range.The measurement range is not larger than a synthetic wavelength.Here,to break through this limitation,we propose a novel DWDH method based on the constrained underdetermined equations,which consists of three parts:(i)prove that the constrained underdetermined equation has a unique integer solution,(ii)design an algorithm to search for the unique integer solution,(iii)introduce a third wavelength into the DWDH system,and design a corresponding algorithm to enhance the anti-noise performance of DWDH.As far as we know,it is the first time that we have discovered that the problem of DWDH can belong in a problem of contained underdetermined equations,and it is also the first time that we have given the mathematical proof for breaking through the limitation of the measurement range.A series of results is shown to test the theory and the corresponding algorithms.More importantly,since the principle of proposed DWDH is based on basic mathematical principles,it can be further extended to various fields,such as dual-wavelength microwave imaging and dual-wavelength coherent diffraction imaging.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575011)the Key Project of the National Natural Science Foundation of China(Grant No.61235010)
文摘A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Erdoped fiber(EDF) laser with a fiber loop mirror(FLM). The pulse duration of the soliton is 15 ps and the peak-to-peak separation is 125 ps. The repetition rate of the pulse sequence is 3.47 MHz. The output power is 11.8 mW at the pump power of 128 mW, corresponding to the pulse energy of 1.52 nJ. The FLM with a polarization controller can produce a comb spectrum, which acts as a filter. By adjusting the polarization controller or varying the pump power, the central wavelength of the comb spectrum can be tuned. When it combines with the reflective spectrum of the fiber Bragg grating, the total spectrum of the cavity can be cleaved into two parts, then the bound state soliton with dual-wavelength at 1549.7 nm and 1550.4 nm is obtained.
基金Supported by the University of Malaya under Grant No PG175-2015B
文摘We present an all-fiber dual-wavelength holmium-doped veloped holmium-doped fiber (HDF) as a gain medium fiber laser operating in 2 #m region using a newly de- The proposed fiber laser is constructed by using a hybrid gain medium, i.e., a thulium ytterbium co-doped fiber (TYDF) and an HDF in conjunction with a simple half-opened linear cavity, which is formed by a broadband mirror and an output coupler reflector. Without the HDF, the TYDF laser operates at wavelengths of 1991 and 1999nm with a signal-to-noise ratio of more than 34dB and the slope efficiency of 26.16 %. With the HDF, dual-wavelength output lines are obtained at 2075 and 2083nm with signal-to-noise ratios of more than difference between the two peaks of less than 1 dB at 17dB, 3dB bandwidth of less than 0.2nm and the power the TYDF laser pump power of 320roW.
基金supported by the National Natural Science Foundation of China(Grant No.11074078)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20094407110002)+1 种基金the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant No.C10183)the Key Program for Scientific and Technological Innovations of Higher Education Institutes in Guangdong Province,China(Grant No.cxzdlOll)
文摘We report on the generation of dual-wavelength dissipative solitons in a passively mode-locked fibre laser with a net normal dispersion using the nonlinear polarization rotation (NPR) technique. Taking the intrinsic advantage of the intracavity birefringence-induced spectral filtering effect in the NPR-based ring laser cavity, the dual-wavelength dissipative solitons are obtained. In addition, the wavelength separation and the lasing location of the dual-wavelength solitons can be flexibly tuned by changing the orientation of the polarization controller.
基金Supported by the Iraqi Ministry of Higher Education and Scientific Research and University of Baghdad
文摘We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374161)the Open Research Project of Jiangsu Provincial Key Labo-ratory of Meteorological Observation and Information Processing,China(Grant No.KDXS1206)the Project Funded by the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘A novel widely tunable dual-wavelength mid-IR difference frequency generation (DFG) scheme with uniform grating periodically poled lithium niobate (PPLN) is presented in this paper. By using the temperature-dependent dispersion property of PPLN, the quasi-phase matching (QPM) peak for the pump may evolve into two separate ones and the wavelength spacing between them increases with the decrease of the crystal temperature. Such two pump QPM peaks may allow simultaneous dual-wavelength mid-IR laser radiations while properly setting the two fundamental pump wavelengths. With this scheme, mid-IR dual-wavelength laser radiations at around 3.228 and 3.548, 3.114 and 3.661, and 3.019 and 3.76 μm, are experimentally achieved for the crystal temperatures of 90, 65, and 30 ℃, respectively, based on the fiber laser fundamental lights.