To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequenci...To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang.展开更多
The results on a dissociation behavior of propane hydrates prepared from "dry water" and contained unreacted residual water in the form of ice inclusions or supercooled liquid water(water solution of gas) were pre...The results on a dissociation behavior of propane hydrates prepared from "dry water" and contained unreacted residual water in the form of ice inclusions or supercooled liquid water(water solution of gas) were presented for temperatures below 273 K.The temperature ramping or pressure release method was used for the dissociation of propane hydrate samples.It was found that the mechanism of gas hydrate dissociation at temperatures below 273 K depended on the phase state of unreacted water in the hydrate sample.Gas hydrates dissociated into ice and gas if the ice inclusions were in the hydrate sample.The samples of propane hydrates with inclusions of unreacted supercooled water only(without ice inclusions) dissociated into supercooled water and gas below the pressure of the supercooled water-hydrate-gas metastable equilibrium.展开更多
基金National Key Research and Development Plan(2021YFD1900805)Funded Project of Basic Scientific Research Business of Public Welfare Research Institutes in Autonomous Region(KY2022127)。
文摘To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang.
基金supported by the Council for Grants of the President of the Russian Federation(Grant NSh–3929.2014.5)the Basic Research Programs of the RAS(Program No.8,and Program the Arctic)the Siberian Branch of the RAS(Interdisciplinary Project No.144)
文摘The results on a dissociation behavior of propane hydrates prepared from "dry water" and contained unreacted residual water in the form of ice inclusions or supercooled liquid water(water solution of gas) were presented for temperatures below 273 K.The temperature ramping or pressure release method was used for the dissociation of propane hydrate samples.It was found that the mechanism of gas hydrate dissociation at temperatures below 273 K depended on the phase state of unreacted water in the hydrate sample.Gas hydrates dissociated into ice and gas if the ice inclusions were in the hydrate sample.The samples of propane hydrates with inclusions of unreacted supercooled water only(without ice inclusions) dissociated into supercooled water and gas below the pressure of the supercooled water-hydrate-gas metastable equilibrium.