The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
为提高主动配电网(active distribution network,ADN)运行经济性和用户满意度,提出一种考虑需求响应和用户满意度的ADN优化调度方法。综合考虑ADN运行过程中的购电成本、发电成本、维护成本和需求响应成本,建立了以ADN总运行成本最小为...为提高主动配电网(active distribution network,ADN)运行经济性和用户满意度,提出一种考虑需求响应和用户满意度的ADN优化调度方法。综合考虑ADN运行过程中的购电成本、发电成本、维护成本和需求响应成本,建立了以ADN总运行成本最小为目标函数的优化调度模型。利用混沌映射、莱维飞行和收敛因子非线性变化等策略对斑点鬣狗优化算法(spotted hyena optimization,SHO)进行优化,以提高斑点鬣狗算法的优化性能。采用改进斑点鬣狗优化算法(ISHO)对ADN优化调度模型进行求解,算例分析结果表明,ISHO算法的优化效果优于其他算法,2种需求响应同时参与系统调度时的ADN总运行成本最小,经济性更好。展开更多
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘为提高主动配电网(active distribution network,ADN)运行经济性和用户满意度,提出一种考虑需求响应和用户满意度的ADN优化调度方法。综合考虑ADN运行过程中的购电成本、发电成本、维护成本和需求响应成本,建立了以ADN总运行成本最小为目标函数的优化调度模型。利用混沌映射、莱维飞行和收敛因子非线性变化等策略对斑点鬣狗优化算法(spotted hyena optimization,SHO)进行优化,以提高斑点鬣狗算法的优化性能。采用改进斑点鬣狗优化算法(ISHO)对ADN优化调度模型进行求解,算例分析结果表明,ISHO算法的优化效果优于其他算法,2种需求响应同时参与系统调度时的ADN总运行成本最小,经济性更好。