Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing copri...Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing coprime array,we propose a high-order extended coprime array(HoECA)for improved direction of arrival(DOA)estimation.We first derive the closed-form expressions for the range of consecutive lags.Then,by changing the inter-element spacing of a uniform linear array(ULA),three cases are proposed and discussed.It is indicated that the HoECA can obtain the largest number of consecutive lags when the spacing takes the maximum value.Finally,by comparing it with the other sparse arrays,the optimized HoECA enjoys a larger number of consecutive lags with mitigating mutual coupling.Simulation results are shown to evaluate the superiority of HoECA over the others in terms of DOF,mutual coupling leakage and estimation accuracy.展开更多
A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation tec...A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ...A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为...针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为了使算法能适应高斯噪声和不同强度的脉冲噪声,将位置得分函数表示为高斯位置得分函数和一系列非线性函数的线性组合,利用噪声样本估计线性组合系数从而建立损失函数。最后,采用迭代硬阈值算法进行稀疏重构,并通过改进信号更新策略提高正确收敛的概率。仿真结果表明,所提算法能有效抑制互耦效应和脉冲(高斯)噪声的干扰,同时相较已有算法在低信噪比、强脉冲特性下的性能有显著提升。展开更多
针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插...针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插虚拟阵列的协方差矩阵与虚拟测量值之间的关系,提出一个关于等效虚拟测量向量的最小化问题,通过凸优化工具箱重构插值后的虚拟阵列协方差矩阵,结合酉变换和总体最小二乘方法进行DOA估计。仿真结果和湖上试验表明,该方法充分利用了非匀虚拟阵列中的所有虚拟阵元,提高了自由度和估计精度,具有有效性。展开更多
To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a de...To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a deep unfolded amplitude-phase error self-calibration network.Firstly,a sparse-based DOA model with an array convex error restriction is established,which gets resolved via an alternating iterative minimization(AIM)algo-rithm.The algorithm is then unrolled to a deep network known as AE-AIM Network(AE-AIM-Net),where all parameters are opti-mized through multi-task learning using the constructed com-plete dataset.The results of the simulation and theoretical analy-sis suggest that the proposed unfolded network achieves lower computational costs compared to typical sparse recovery meth-ods.Furthermore,it maintains excellent estimation performance even in the presence of array magnitude-phase errors.展开更多
实值处理具有降低高自由度多输入多输出(multiple-input multiple-output,MIMO)雷达角度估计大计算量的优势。但受制于阵列的共轭对称性,对于任意阵列结构的双基地MIMO雷达发射角(direction of departure,DOD)和接收角(direction of arr...实值处理具有降低高自由度多输入多输出(multiple-input multiple-output,MIMO)雷达角度估计大计算量的优势。但受制于阵列的共轭对称性,对于任意阵列结构的双基地MIMO雷达发射角(direction of departure,DOD)和接收角(direction of arrival,DOA)联合估计,若不做附加的预处理则无法实现实值操作,故将常规阵列实值处理的多重信号分类(multiple signal classification,MUSIC)超分辨算法推广至任意阵列结构的双基地MIMO雷达。首先根据MIMO雷达的导向矢量共轭与镜像的对等性,提取接收信号协方差矩阵的实部,并对其进行特征分解得到"目标加倍"的信号子空间及其应对的噪声子空间;然后利用Kronecker积的特性对其进行降维处理,得到搜索区域减半的一维半实值域MUSIC谱,取出目标DOD真值与其镜像代入降维Capon算法来剔除虚拟峰值得到目标DOD估计真值;最后利用特征矢量得到模糊DOA估计值,采用方向余弦差最小范数方法得到目标DOA无模糊估计值。本文算法估计性能与一维搜索复数域MUSIC相当,计算量约降50%,且能够实现DOD和DOA的自动配对。仿真结果证明了该算法的有效性。展开更多
多输入多输出(Multiple-input multiple-output,MIMO)雷达利用多个天线发送和接收信号,具有超过传统相控阵的潜在优势。本文提出一种双基地MIMO雷达中基于传播算子的离开角(Direction of departure,DOD)和到达角(Direction of arrival,D...多输入多输出(Multiple-input multiple-output,MIMO)雷达利用多个天线发送和接收信号,具有超过传统相控阵的潜在优势。本文提出一种双基地MIMO雷达中基于传播算子的离开角(Direction of departure,DOD)和到达角(Direction of arrival,DOA)估计算法。该算法利用传播因子避免了对协方差矩阵特征值分解降低了运算的复杂度,并且在低信噪比和低快拍数的情况下,该算法仍具有良好的性能。与快速多目标定位算法相比,本文算法的角度估计性能有很大的提高。文中还推导出了离开角和到达角估计的均方误差。仿真结果证明了该算法的有效性。展开更多
展开互质阵列将两个子阵完全展开,因而可在阵元数目受限情况下获得相较于均匀阵列以及传统互质阵列更大的阵列孔径。文中基于双基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达阵列结构,提出了基于降维多重信...展开互质阵列将两个子阵完全展开,因而可在阵元数目受限情况下获得相较于均匀阵列以及传统互质阵列更大的阵列孔径。文中基于双基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达阵列结构,提出了基于降维多重信号分类(Multiple Signal Classification,MUSIC)算法的双基地展开互质阵列MIMO雷达离开角(Direction of Departure,DOD)、到达角(Direction of Arrival,DOA)联合估计算法。算法通过增加约束并构造代价函数的方式,将二维MUSIC算法中的穷尽搜索二维谱峰转化为求解带约束二次优化问题,先后得到DOA、DOD,并且DOD与DOA自动配对。降维思想的引入使得算法无需二维搜索,因而复杂度显著下降。同时,得益于展开互质阵列MIMO雷达形成的虚拟阵列与大幅扩展的阵列孔径,文中提出的算法亦获得了显著提升的分辨率、自由度以及低信噪比下更为优异的估计性能。此外,子阵数目的互质消除了阵元间距大于半波长可能导致的相位模糊问题。仿真验证了算法的有效性。展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(62071476,62022091,61801488,61921001)the China Postdoctoral Science Foundation(2021T140788,2020M683728)+1 种基金the Science and Technology Innovation Program of Hunan Province(2020RC2041)the Research Program of National University of Defense Technology(ZK19-10,ZK20-33).
文摘Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing coprime array,we propose a high-order extended coprime array(HoECA)for improved direction of arrival(DOA)estimation.We first derive the closed-form expressions for the range of consecutive lags.Then,by changing the inter-element spacing of a uniform linear array(ULA),three cases are proposed and discussed.It is indicated that the HoECA can obtain the largest number of consecutive lags when the spacing takes the maximum value.Finally,by comparing it with the other sparse arrays,the optimized HoECA enjoys a larger number of consecutive lags with mitigating mutual coupling.Simulation results are shown to evaluate the superiority of HoECA over the others in terms of DOF,mutual coupling leakage and estimation accuracy.
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
文摘A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0645)
文摘A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
文摘针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为了使算法能适应高斯噪声和不同强度的脉冲噪声,将位置得分函数表示为高斯位置得分函数和一系列非线性函数的线性组合,利用噪声样本估计线性组合系数从而建立损失函数。最后,采用迭代硬阈值算法进行稀疏重构,并通过改进信号更新策略提高正确收敛的概率。仿真结果表明,所提算法能有效抑制互耦效应和脉冲(高斯)噪声的干扰,同时相较已有算法在低信噪比、强脉冲特性下的性能有显著提升。
文摘针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插虚拟阵列的协方差矩阵与虚拟测量值之间的关系,提出一个关于等效虚拟测量向量的最小化问题,通过凸优化工具箱重构插值后的虚拟阵列协方差矩阵,结合酉变换和总体最小二乘方法进行DOA估计。仿真结果和湖上试验表明,该方法充分利用了非匀虚拟阵列中的所有虚拟阵元,提高了自由度和估计精度,具有有效性。
基金supported by the National Natural Science Foundation of China(62301598).
文摘To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a deep unfolded amplitude-phase error self-calibration network.Firstly,a sparse-based DOA model with an array convex error restriction is established,which gets resolved via an alternating iterative minimization(AIM)algo-rithm.The algorithm is then unrolled to a deep network known as AE-AIM Network(AE-AIM-Net),where all parameters are opti-mized through multi-task learning using the constructed com-plete dataset.The results of the simulation and theoretical analy-sis suggest that the proposed unfolded network achieves lower computational costs compared to typical sparse recovery meth-ods.Furthermore,it maintains excellent estimation performance even in the presence of array magnitude-phase errors.
文摘实值处理具有降低高自由度多输入多输出(multiple-input multiple-output,MIMO)雷达角度估计大计算量的优势。但受制于阵列的共轭对称性,对于任意阵列结构的双基地MIMO雷达发射角(direction of departure,DOD)和接收角(direction of arrival,DOA)联合估计,若不做附加的预处理则无法实现实值操作,故将常规阵列实值处理的多重信号分类(multiple signal classification,MUSIC)超分辨算法推广至任意阵列结构的双基地MIMO雷达。首先根据MIMO雷达的导向矢量共轭与镜像的对等性,提取接收信号协方差矩阵的实部,并对其进行特征分解得到"目标加倍"的信号子空间及其应对的噪声子空间;然后利用Kronecker积的特性对其进行降维处理,得到搜索区域减半的一维半实值域MUSIC谱,取出目标DOD真值与其镜像代入降维Capon算法来剔除虚拟峰值得到目标DOD估计真值;最后利用特征矢量得到模糊DOA估计值,采用方向余弦差最小范数方法得到目标DOA无模糊估计值。本文算法估计性能与一维搜索复数域MUSIC相当,计算量约降50%,且能够实现DOD和DOA的自动配对。仿真结果证明了该算法的有效性。
文摘多输入多输出(Multiple-input multiple-output,MIMO)雷达利用多个天线发送和接收信号,具有超过传统相控阵的潜在优势。本文提出一种双基地MIMO雷达中基于传播算子的离开角(Direction of departure,DOD)和到达角(Direction of arrival,DOA)估计算法。该算法利用传播因子避免了对协方差矩阵特征值分解降低了运算的复杂度,并且在低信噪比和低快拍数的情况下,该算法仍具有良好的性能。与快速多目标定位算法相比,本文算法的角度估计性能有很大的提高。文中还推导出了离开角和到达角估计的均方误差。仿真结果证明了该算法的有效性。
文摘展开互质阵列将两个子阵完全展开,因而可在阵元数目受限情况下获得相较于均匀阵列以及传统互质阵列更大的阵列孔径。文中基于双基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达阵列结构,提出了基于降维多重信号分类(Multiple Signal Classification,MUSIC)算法的双基地展开互质阵列MIMO雷达离开角(Direction of Departure,DOD)、到达角(Direction of Arrival,DOA)联合估计算法。算法通过增加约束并构造代价函数的方式,将二维MUSIC算法中的穷尽搜索二维谱峰转化为求解带约束二次优化问题,先后得到DOA、DOD,并且DOD与DOA自动配对。降维思想的引入使得算法无需二维搜索,因而复杂度显著下降。同时,得益于展开互质阵列MIMO雷达形成的虚拟阵列与大幅扩展的阵列孔径,文中提出的算法亦获得了显著提升的分辨率、自由度以及低信噪比下更为优异的估计性能。此外,子阵数目的互质消除了阵元间距大于半波长可能导致的相位模糊问题。仿真验证了算法的有效性。