Comparative studies of four common-used anode gas diffusion layers(A-GDLs),namely carbon cloth,carbon paper,carbon paper based on XC-72(in short XC-72)and GDL made of carbon nanotubes(CNT)for direct methanol fuel cell...Comparative studies of four common-used anode gas diffusion layers(A-GDLs),namely carbon cloth,carbon paper,carbon paper based on XC-72(in short XC-72)and GDL made of carbon nanotubes(CNT)for direct methanol fuel cells(DMFCs)were carried out and discussed.The results of scanning electron microscope(SEM),mercury intrusion porosimeter(MIP)and electrochemical test show that CNT has large pore size distribution in pore size of 1000-3000nm and the largest total porosity compared with those of the other three.Carbon paper and XC-72show disadvantageous influences on cell performances at high current density,because carbon paper has many large pores which are unsuited for water transport,while XC-72has many small pores which are unsuited for gas transport.Though cell with carbon cloth has the highest methanol diffusion coefficient,it shows a little lower performance than that with CNT due to its thickness.Anode polarization(AP)results also display that the cell with CNT has the least methanol mass transfer resistance.As a result,the cell with CNT shows the best performance with the highest limiting current density and peak power density of 460 mA·cm^(-2)and 110mW·cm^(-2),respectively.展开更多
The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute th...The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.展开更多
文摘Comparative studies of four common-used anode gas diffusion layers(A-GDLs),namely carbon cloth,carbon paper,carbon paper based on XC-72(in short XC-72)and GDL made of carbon nanotubes(CNT)for direct methanol fuel cells(DMFCs)were carried out and discussed.The results of scanning electron microscope(SEM),mercury intrusion porosimeter(MIP)and electrochemical test show that CNT has large pore size distribution in pore size of 1000-3000nm and the largest total porosity compared with those of the other three.Carbon paper and XC-72show disadvantageous influences on cell performances at high current density,because carbon paper has many large pores which are unsuited for water transport,while XC-72has many small pores which are unsuited for gas transport.Though cell with carbon cloth has the highest methanol diffusion coefficient,it shows a little lower performance than that with CNT due to its thickness.Anode polarization(AP)results also display that the cell with CNT has the least methanol mass transfer resistance.As a result,the cell with CNT shows the best performance with the highest limiting current density and peak power density of 460 mA·cm^(-2)and 110mW·cm^(-2),respectively.
基金supported by the National Natural Science Foundation of China(61101173)
文摘The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.