Background Direct seeding is potentially a more cost-effective alternative to conventional tree planting for restoring tropical forest ecosystems.However,seed loss,due to removal and damage by animals,can substantiall...Background Direct seeding is potentially a more cost-effective alternative to conventional tree planting for restoring tropical forest ecosystems.However,seed loss,due to removal and damage by animals,can substantially reduce seedling establishment.Therefore,this study examined the impact of seed predation on seedling establishment of five tree species,native to upland evergreen forests of northern Thailand:Hovenia dulcis,Alangium kurzii,Prunus cerasoides,Choerospondias axillaris and Horsfieldia amygdalina.We tested the hypothesis that excluding animals would significantly reduce seed removal,and increase both germination and seedling survival.The objective was to calculate a composite index of the relative suitability of the species studied for direct seeding.Methods Seeds were placed on the ground in a deforested site and subjected to five predator-exclusion treatments:wire cage,insecticide,cage+insecticide,open cage and no exclusion(control).Results Seed loss was highest for H.amygdalina(the largest seed tested).Across species,wire cages significantly reduced seed loss by 12.4%compared with controls(P<0.001)suggesting that vertebrates were the major seed predators.Seed germination ranged from 0 to 77%among the species tested.Based on relative species-performance scores(combining measures of survival and seedling growth),P.cerasoides was the most suitable species for direct seeding,followed by A.kurzii and C.axillaris,whilst H.dulcis and H.amygdalina were unsuitable.H.dulcis had small seeds with low seed germination,whereas H.amygdalina was subjected to high seed removal.Conclusion Exclusion of seed predators and the selection of suitable species may substantially increase the success of direct seeding,as a technique for restoring upland evergreen forest ecosystems.Testing more species for their suitability is needed,to provide more diverse options for forest restoration.展开更多
Testing techniques to reduce weed infestation is a crucial step in developing direct tree seeding systems. The use of pre-emergence herbicides may be an alternative to manual weeding techniques, but so far, informatio...Testing techniques to reduce weed infestation is a crucial step in developing direct tree seeding systems. The use of pre-emergence herbicides may be an alternative to manual weeding techniques, but so far, information on how they affect the seeds of native tree species is scarce. We established a greenhouse experiment to evaluate the effects of four pre-emergence herbicides (atrazine, diuron, isoxaflutole and oxyfluorfen) on weed suppression and seedling emergence and early growth of seven tropical forest tree species (Annona coriacea Mart., Citharexylum myrianthum Cham., Cordia ecalyculata Vell., Peltophorum dubium (Spreng.) Taub., Psidium guajava L., Pterogyne nitens Tul. and Schinus terebinthifolia Raddi). The experimental design was a randomized complete block design with five treatments and five replicates. The treatments consisted of a single dose of each pre-emergence herbicide and a control. Throughout the 60 days after sowing we evaluated weed cover and seedling emergence and early growth of tree species. Overall, our results suggest that all tested herbicides reduced weed cover; however, they also negatively affected tree species seedling emergence. Of the four herbicides tested, atrazine and diuron showed the greatest effects on tree seedling emergence, oxyfluorfen was least aggressive towards native species and isoxaflutole was most effective in weed control. Native tree species varied in their responses to herbicides, indicating that future experiments should increase the number of species tested as well as investigate how seed traits can affect the species responses to different herbicides.展开更多
基金This study was funded by the Thailand Research Fund(TRF Grant Number:MRG5980177),the Development and Promotion of Science and Technology Talents Project(Royal Thai Government Scholarship).Chiang Mai University partially supported this research,including the inputs of Stephen Elliott.
文摘Background Direct seeding is potentially a more cost-effective alternative to conventional tree planting for restoring tropical forest ecosystems.However,seed loss,due to removal and damage by animals,can substantially reduce seedling establishment.Therefore,this study examined the impact of seed predation on seedling establishment of five tree species,native to upland evergreen forests of northern Thailand:Hovenia dulcis,Alangium kurzii,Prunus cerasoides,Choerospondias axillaris and Horsfieldia amygdalina.We tested the hypothesis that excluding animals would significantly reduce seed removal,and increase both germination and seedling survival.The objective was to calculate a composite index of the relative suitability of the species studied for direct seeding.Methods Seeds were placed on the ground in a deforested site and subjected to five predator-exclusion treatments:wire cage,insecticide,cage+insecticide,open cage and no exclusion(control).Results Seed loss was highest for H.amygdalina(the largest seed tested).Across species,wire cages significantly reduced seed loss by 12.4%compared with controls(P<0.001)suggesting that vertebrates were the major seed predators.Seed germination ranged from 0 to 77%among the species tested.Based on relative species-performance scores(combining measures of survival and seedling growth),P.cerasoides was the most suitable species for direct seeding,followed by A.kurzii and C.axillaris,whilst H.dulcis and H.amygdalina were unsuitable.H.dulcis had small seeds with low seed germination,whereas H.amygdalina was subjected to high seed removal.Conclusion Exclusion of seed predators and the selection of suitable species may substantially increase the success of direct seeding,as a technique for restoring upland evergreen forest ecosystems.Testing more species for their suitability is needed,to provide more diverse options for forest restoration.
基金financially supported by a Scientific Initiation Scholarship from FAPESP(So Paulo Research Council)financially supported by a Research Productivity Fellowship from CNPq(National Council for Research and Technological Development)
文摘Testing techniques to reduce weed infestation is a crucial step in developing direct tree seeding systems. The use of pre-emergence herbicides may be an alternative to manual weeding techniques, but so far, information on how they affect the seeds of native tree species is scarce. We established a greenhouse experiment to evaluate the effects of four pre-emergence herbicides (atrazine, diuron, isoxaflutole and oxyfluorfen) on weed suppression and seedling emergence and early growth of seven tropical forest tree species (Annona coriacea Mart., Citharexylum myrianthum Cham., Cordia ecalyculata Vell., Peltophorum dubium (Spreng.) Taub., Psidium guajava L., Pterogyne nitens Tul. and Schinus terebinthifolia Raddi). The experimental design was a randomized complete block design with five treatments and five replicates. The treatments consisted of a single dose of each pre-emergence herbicide and a control. Throughout the 60 days after sowing we evaluated weed cover and seedling emergence and early growth of tree species. Overall, our results suggest that all tested herbicides reduced weed cover; however, they also negatively affected tree species seedling emergence. Of the four herbicides tested, atrazine and diuron showed the greatest effects on tree seedling emergence, oxyfluorfen was least aggressive towards native species and isoxaflutole was most effective in weed control. Native tree species varied in their responses to herbicides, indicating that future experiments should increase the number of species tested as well as investigate how seed traits can affect the species responses to different herbicides.