Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
An approach for joint direction of arrival(DOA) angle and frequency estimation for a linear array is investigated in this paper. Specifically, we make the utmost of the autocorrelation and cross-correlation informatio...An approach for joint direction of arrival(DOA) angle and frequency estimation for a linear array is investigated in this paper. Specifically, we make the utmost of the autocorrelation and cross-correlation information to propose an extended DOAmatrix(EDOAM) method. Subsequently, we obtain the autopaired angle and frequency estimates by the eigenvalues and the corresponding eigenvectors of the novel DOA matrix. Furthermore, the proposed method surpasses the DOA-matrix method which partly ignores the autocorrelation and cross-correlation information. Finally, the proposed method works well for both uniform and non-uniform linear arrays. The simulation consequences indicate the superiority of our proposed approach.展开更多
以同一系统中静止同步串联补偿器(static synchronous series compensator,SSSC)和静止无功补偿器(static var compensator,SVC)的共同作用为研究对象,建立了2者的数学参数模型,推导出控制器之间相互作用的量化关系式。通过控制参数分...以同一系统中静止同步串联补偿器(static synchronous series compensator,SSSC)和静止无功补偿器(static var compensator,SVC)的共同作用为研究对象,建立了2者的数学参数模型,推导出控制器之间相互作用的量化关系式。通过控制参数分析和仿真分析得出结论:灵活交流输电(FACTS)装置的控制方式和电气耦合程度对SSSC和SVC的相互作用有很大影响。最后基于直接反馈线性化(DFL)方法设计了SSSC和SVC协调控制器,仿真结果验证了该协调控制策略的有效性。展开更多
考虑双平行线阵中非圆信号二维波达方向(Direction of arrival,DOA)估计问题,提出了一种基于Euler变换传播算子(Propagator method,PM)的二维DOA估计算法。该算法利用非圆信号的特性,扩展了接收数据矩阵,使得角度估计性能优于二维PM算...考虑双平行线阵中非圆信号二维波达方向(Direction of arrival,DOA)估计问题,提出了一种基于Euler变换传播算子(Propagator method,PM)的二维DOA估计算法。该算法利用非圆信号的特性,扩展了接收数据矩阵,使得角度估计性能优于二维PM算法。同时采用Euler变换把非圆PM算法中的复数运算转换为实数运算,降低计算复杂度,角度估计性能逼近非圆PM算法。该算法可以实现二维角度的自动配对,与传统PM算法相比,可同时估计出更多的信源。该算法的优越性均可在文中得到验证。展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金supported by the National Natural Science Foundation of China (61971217,61971218,61631020)Jiangsu Natural Science Foundation (BK20200444)+1 种基金Jiangsu Key Research and Development Project (BE2020101)the Fund of Sonar Technology Key Laboratory。
文摘An approach for joint direction of arrival(DOA) angle and frequency estimation for a linear array is investigated in this paper. Specifically, we make the utmost of the autocorrelation and cross-correlation information to propose an extended DOAmatrix(EDOAM) method. Subsequently, we obtain the autopaired angle and frequency estimates by the eigenvalues and the corresponding eigenvectors of the novel DOA matrix. Furthermore, the proposed method surpasses the DOA-matrix method which partly ignores the autocorrelation and cross-correlation information. Finally, the proposed method works well for both uniform and non-uniform linear arrays. The simulation consequences indicate the superiority of our proposed approach.
文摘以同一系统中静止同步串联补偿器(static synchronous series compensator,SSSC)和静止无功补偿器(static var compensator,SVC)的共同作用为研究对象,建立了2者的数学参数模型,推导出控制器之间相互作用的量化关系式。通过控制参数分析和仿真分析得出结论:灵活交流输电(FACTS)装置的控制方式和电气耦合程度对SSSC和SVC的相互作用有很大影响。最后基于直接反馈线性化(DFL)方法设计了SSSC和SVC协调控制器,仿真结果验证了该协调控制策略的有效性。
文摘考虑双平行线阵中非圆信号二维波达方向(Direction of arrival,DOA)估计问题,提出了一种基于Euler变换传播算子(Propagator method,PM)的二维DOA估计算法。该算法利用非圆信号的特性,扩展了接收数据矩阵,使得角度估计性能优于二维PM算法。同时采用Euler变换把非圆PM算法中的复数运算转换为实数运算,降低计算复杂度,角度估计性能逼近非圆PM算法。该算法可以实现二维角度的自动配对,与传统PM算法相比,可同时估计出更多的信源。该算法的优越性均可在文中得到验证。